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Abstract 

For over six decades, the theory and design of radar systems have been dominated 

by probability theory and statistics, information theory, signal processing and con­

trol However, the similar encoding-decoding property that exists between the visual 

biam and radar has been sadly overlooked m all radar systems This thesis lays 

down the foundation of a new generation of radar systems, namely cognitive radar, 

that was described in a 2006 seminal paper by Haykm Four essential elements of 

cognitive radar are Bayesian filtering in the receiver, dynamic programming in the 

transmitter, memory, and global feedback to facilitate computational intelligence All 

these elements excluding the memory compose a well known property of mammalian 

cortex, the perception-action cycle As such, the cognitive radar that has only this 

cycle is named as the basic cognitive radar (BCR) For tracking applications, this 

thesis presents the underlying theory of BCR, with emphasis being placed on the 

cubature Kalman filter to approximate the Bayesian filter in the receiver, dynamic 

optimization for transmit-waveform selection in the transmitter, and global feedback 

embodying the transmitter, the radar environment, and the receiver all under one 

overall feedback loop 

Built on the knowledge learnt from the BCR, this thesis expands the basic perception-

action cycle to encompass three more properties of human cognition, that is, memory, 

1 
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attention, and intelligence Specifically, the provision for memory includes the three 

essential elements, 1 e , the perceptual memory, executive memory, and coordinating 

perception-action memory that couples the first two memories Provision of the three 

memories adds an advanced version of cognitive radar, namely the nested cognitive 

radar (NCR) m light of the nesting of three memories in the perception-action cycle 

In this thesis, extensive computer simulations are also conducted to demonstrate 

the ability of this new radar concept over a conventional radar structure Three 

important scenarios of tracking applications are considered, they are (a), linear tar­

get tracking, (b), falling object tracking, and (c), high-dimensional target tracking 

with continuous-discrete model All simulation results confirm that cognitive radar 

outperforms the conventional radar systems significantly 

In conducting the simulations, an interesting phenomenon is also observed, which 

is named the chattering effect The underlying physics and mathematical model of 

this effect are discussed For the purpose of studying the behaviour of cognitive 

radar in disturbance, demonstrative experiments are further conducted Simulation 

results indicate the superiority of NCR over BCR and the conventional radar in low, 

moderate and even strong disturbance 

n 



www.manaraa.com

Acknowledgements 

Completing an important cause requires mass efforts This dissertation would not 

have been possible had it not been for the encouragements and supports by many 

people I am indebted to 

<s? In the first place, I would like to thank my supervisor Dr Simon Haykm, who 

has provided me the possibility to work on a research topic that is indeed on 

the cutting edge of the new generation radar system spanning over multiple 

disciplines His devotion, focus and vision have inspired and guided me along 

this journey He is and always will be a model for me 

•s? I would also like to express my gratitude to two other professors in my commit­

tee, Dr Thia Kirubarajan and Dr Tom Hurd Their comments and feedback 

have been assisting me throughout my research duration I am grateful to Dr 

Tim Davidson for all his valuable comments to my research 

V My thanks also extend to Cheryl Gies, Lola Brooks, Helen Jachana, Terry 

Greenlay, Cosmm Carom and Alexa Huang for helping me during my stay at 

the ECE 

's? Thanks to my collaborators Ienkaran Arasaratnam and Amm Zia for working 

m 



www.manaraa.com

with me on the first generation of the cognitive radar system I also thank my 

labmate and close friend Peyman Setoodeh The discussions with them have 

deeply enriched my understanding of the research topic 

9? Thanks to all my friends for sharing both my happiness and sadness They 

are Mengyu Ran, Patrick Fayard, Ula§ Gunturkun, Yongxm Wang, Le Yang, 

Tao Feng, Karl Wiklund, Jiapmg Zhu, Farhad Khozeimeh, Jerome Dominique 

Vincent, Mathangi Ganapathy, Nelson Costa, Gefei Zhou, Jm Ning, Jm Lei, 

Runzhou (Leo) Li and Junfeng Sun 

<s? Last, but by no means least, I thank my wife, Qunchao Li, for has been loving 

and supporting me all the way along I also owe my parents a great thank for 

their faith and unconditional support 

IV 



www.manaraa.com

List of Abbreviations 

ATC: 

BCR: 

CD-CKF: 

CDS: 

CKF: 

CR: 

CRLB: 

CTR: 

DP: 

EA-RMSE: 

EKF: 

ESN: 

FFT: 

FIM: 

FWF: 

GHA: 

KF: 

KKT: 

air traffic control 

basic cognitive radar 

continuous-discrete cubature Kalman filter 

cognitive dynamic systems 

cubature Kalman filter 

cognitive radar 

Cramer-Rao lower bound 

cognitive tracking radar 

dynamic programming 

ensemble-averaged RMSE 

extended Kalman filter 

echo state network 

fast Fourier transform 

Fisher information matrix 

fixed waveform 

generalized Hebbian algorithm 

Kalman filter 

Karush-Kuhn-Tucker 



www.manaraa.com

LFM 

MLP 

MTT 

NCR 

PCRB 

PF 

RBF 

RMSE 

SNR 

SP 

TPD 

UKF 

VLSI 

VSC 

VSF 

VSS 

linear frequency modulation 

multilayer perceptron 

multiple-target tracking 

nested cognitive radar 

posterior Cramer-Rao lower bound 

particle filter 

radial basis function 

root mean-squared error 

signal-to-noise ratio 

single-point 

two-point differencing 

unscented Kalman filter 

very-large-scale integration 

variable structure control 

variable structure filter 

variable structure system 

VI 



www.manaraa.com

List of Notations 

b The chnp rate of the LFM pulse 

c Speed of the electromagnetic wave propagation 

E[ ] Statistical expectation operator 

fc Carrier frequency 

fD Doppler shift associated with target radial motion 

f ( ) System function modeling the state transition 

g( ) Cost function 

h( ) Measurement function modeling the observer 

H Hypothesis 

H Entropy 

I Mutual information 

I/c Information vector, consisting of the measurements history 

and waveform history till time k 

J Cost-to-go function 

J Fisher information matrix 

L Dynamic-programming horizon-depth 

n(t) Gaussian noise at the radar receiver input, 

with h(t) denoting its complex envelope 

vn 



www.manaraa.com

S) Gaussian distribution of x with mean fx and covariance £ 

The waveform-parameter grid size 

The state-space dimension 

The measurement-space dimension 

The waveform library at time k 

Received signal at the receiver input from the target 

The real part of a complex value 

) Measurement-noise covariance matrix at discrete time k 

as a function of the transmit waveform parameters Qk-\ 

Complex envelope of the transmitted pulse 

Received signal reflected from the target 

Transmitted radar signal 

Operator extracting the trace of a matrix 

The state vector at time k 

The measurement vector at time k 

The measurements history 

Range of the target, with p denoting the range rate 

Delay between the transmitted and received signal 

reflected by the target 

Policy function mapping the information vector into an action 

Duration of the Gaussian envelope for LFM chirp 

The transmit waveform parameters at time k 

The waveform history at time k 

The returned pulse SNR for target at range p 

vm 



www.manaraa.com

Contents 

Abstract i 

Acknowledgements iii 

List of Abbreviations v 

List of Notations vii 

List of Tables xiii 

List of Figures xx 

1 Introduction 1 

1 1 The Reason for Cognition in Radar Systems 1 

1 2 Literature Review 5 

1 3 Scope of the Thesis 13 

1 4 Contributions 14 

1 5 Organization of the Thesis 15 

2 Basic Cognitive Radar 17 

2 1 Model of Radar Measurements in Baseband 19 

IX 



www.manaraa.com

2 11 Bank of Matched Filters and Envelope Detectors 

2 12 State-Space Model of the Target 

2 2 Basic Perception-Action Cycle 

2 3 Optimal Bayesian Filtering of Environmental Perception 

2 4 Dynamic Optimization for Waveform Selection 

2 4 1 Directed-Information Flow 

2 4 2 Analysis and Synthesis of Waveform Library 

2 4 3 Approximation of the Cost Function g( ) 

2 5 Summary 

Cognitive Radar with Nested Memory 

3 1 Important Facts about Cortex and Mind 

3 2 Memory for Information Storage 

3 2 1 Perceptual Memory 

3 2 2 Executive Memory 

3 2 3 Coordinating Perception-Action Memory 

3 3 Attention for Resource Allocation 

3 3 1 Working Memory 

3 3 2 Perceptual Attention 

3 3 3 Executive Attention 

3 4 Intelligence for Information Synchronization 

3 4 1 Efficiency of Processing Information 

3 4 2 Coordinated Cognitive Information Processing m a 

Manner 

3 4 3 Feedback-Information Metric 

x 



www.manaraa.com

3 5 Practical Benefits of Abundant Use of Distributed Feedback 61 

3 6 Algorithmic Design of the Nested Cognitive Radar 63 

3 6 1 Design of the Memories 63 

3 6 2 Design of Working Memory 72 

3 6 3 Design of the Feedback-Information Metric 75 

3 7 Communications Among Subsystems of Cognitive Radar with Nested 

Memory 76 

3 8 Summary 80 

4 Simulation Evaluations 82 

4 1 Experimental Considerations 84 

4 2 Scenario A Linear Target Tracking 85 

4 2 1 State-Space Model 85 

4 2 2 Experimental Configurations 86 

4 2 3 Simulation Results 88 

4 3 Scenario B Tracking a Falling Object in Space 94 

4 3 1 Problem Formulation 94 

4 3 2 Radar Configurations 97 

4 3 3 Simulation Results 98 

4 4 Scenario C Target Tracking of High-Dimensional Contmuous-Disciete 

Model 108 

4 4 1 State-Space Model 108 

44 2 Radar Configurations 111 

44 3 Simulation Results 112 

4 5 Summary 117 

XI 



www.manaraa.com

5 Underlying Physical Phenomena in Cognitive Radar 120 

5.1 Chattering Effect 121 

5.1.1 Mathematical Definition of Chattering 122 

5.1.2 Chattering Effect in Variable Structure Systems 126 

5.1.3 Chattering Effect in Cognitive Radar in Light of Experimental 

Results 127 

5.2 Behaviour of Cognitive Radar in the Presence of External Disturbance 133 

5.3 Summary 152 

6 Conclusions and Future Research 153 

6.1 Concluding Remarks 153 

6.2 Future Research Directions 155 

A Cubature Kalman Filter (CKF) 158 

B Continuous-Discrete Cubature Kalman Filter (CD-CKF) 163 

C Approximate Dynamic Programming for Waveform Selection 167 

D Derivation of the Approximation Formula in Eq. (2.31) 173 

Bibliography 175 

xu 



www.manaraa.com

List of Tables 

3.1 Parameters used in the memory design 72 

4.1 Ensemble-averaged RMSE for FWF, BCR and NCR: Scenario A . . . 88 

4.2 Ensemble-averaged RMSE for FWF, BCR and NCR: Scenario B . . . 99 

4.3 Ensemble-averaged RMSE for FWF and BCR (L = 1,2): Scenario B 101 

4.4 Ensemble-averaged RMSE for FWF, BCR and NCR: Scenario C . . . 112 

5.1 Ensemble-averaged RMSE for FWF, BCR and NCR with different level 

of constant-velocity disturbance: Scenario A 137 

5.2 Ensemble-averaged RMSE for FWF, BCR and NCR with different level 

of constant-acceleration turbulence: Scenario A 138 

xm 



www.manaraa.com

List of Figures 

1 1 (a) Block-diagram representation of processing stages in perceptual 

tasks, (b) Block-diagram representation of processing stages in radar, 

where the "iadai envnonment" is meant to encompass unknown targets 

embedded in the environment 2 

1 2 Block diagram of a monostatic radar, where the transmitter and re­

ceiver are co-located 4 

2 1 Bank of matched filters 21 

2 2 The perception-action cycle in its most basic form 28 

2 3 Diagram of radar pulse timing 36 

2 4 Information flow in cognitive tracking radar 37 

3 1 Nested perception-action cycle of cognitive radar 45 

3 2 Functional components of attention 51 

3 3 Illustrating (a) Selection of transmitted LFM waveform for use in the 

transmitter, (b) Selection of system-equation parameters for use in the 

receiver 62 

3 4 Demonstrative structure of an MLP with two hidden layers 64 

3 5 Design of the memories using MLPs (a) Perceptual memory, (b) Ex­

ecutive memory 65 

xiv 



www.manaraa.com

3 6 Design of the coordinating perception-action memory using MLP 66 

3 7 Signal-flow graph of output neuron j 67 

3 8 Design of expanded perceptual memory using bank of MLPs 73 

3 9 Design of expanded executive memory using bank of MLPs 73 

3 10 Design of expanded coordinating perception-action memory using bank 

of MLPs 74 

3 11 Cyclic communication flow-graph of the nested cognitive radar 78 

4 1 RMSE of target range (Scenario A) (l) conventional radar equipped 

with fixed waveform (dotted line), (n) basic cognitive radar (dashed 

line), and (in) nested cognitive radar (solid line) 90 

4 2 RMSE of target range-rate (Scenario A) (I) conventional radar equipped 

with fixed waveform (dotted line), (n) basic cognitive radar (dashed 

line), and (m) nested cognitive radar (solid line) 90 

4 3 Waveform selection across time (Scenario A) (a) chirp rate for BCR, 

(b) chirp rate for NCR, (c) length of pulse envelope for BCR, (d) length 

of pulse envelope for NCR 91 

4 4 Chattering of range (Scenario A) (a) FWF, (b) BCR, (c) NCR 92 

4 5 Chattering of range-rate (Scenario A) (a) FWF, (b) BCR, (c) NCR 93 

4 6 Geometry of the falling object scenario 95 

4 7 RMSE of target altitude (Scenario B) (I) conventional radar equipped 

with fixed waveform (dotted line), (n) basic cognitive radar (dashed 

line), and (m) nested cognitive radar (solid line) 102 

xv 



www.manaraa.com

4.8 RMSE of target velocity (Scenario B). (i) conventional radar equipped 

with fixed waveform (dotted line), (ii) basic cognitive radar (dashed 

line), and (iii) nested cognitive radar (solid line) 102 

4.9 RMSE of ballistic coefficient (Scenario B). (i) conventional radar equipped 

with fixed waveform (dotted line), (ii) basic cognitive radar (dashed 

line), and (iii) nested cognitive radar (solid line) 102 

4.10 Waveform selection across time (Scenario B). (a) chirp rate for BCR, 

(b) chirp rate for NCR, (c) length of pulse envelope for BCR, (d) length 

of pulse envelope for NCR 103 

4.11 Chattering of range (Scenario B). (a) FWF, (b) BCR, (c) NCR. . . . 104 

4.12 Chattering of range-rate (Scenario B). (a) FWF, (b) BCR, (c) NCR. 105 

4.13 RMSE of target altitude (Scenario B). (i) conventional radar equipped 

with fixed waveform (dotted line), (ii) basic cognitive radar with L = 1 

(dashed line), and (iii) basic cognitive radar with L = 2 (solid line). . 106 

4.14 RMSE of target velocity (Scenario B). (i) conventional radar equipped 

with fixed waveform (dotted line), (ii) basic cognitive radar with L = 1 

(dashed line), and (iii) basic cognitive radar with L = 2 (solid line). . 106 

4.15 RMSE of ballistic coefficient (Scenario B). (i) conventional radar equipped 

with fixed waveform (dotted line), (ii) basic cognitive radar with L — 1 

(dashed line), and (iii) basic cognitive radar with L — 2 (solid line). . 106 

4.16 Waveform selection across time (Scenario B). (a) chirp rate for BCR 

with L = 1, (b) chirp rate for BCR with L = 2, (c) length of pulse 

envelope for BCR with L = 1, (d) length of pulse envelope for BCR 

with L = 2 107 

xvi 



www.manaraa.com

4 17 High-dimensional target trajectory of continuous-discrete model 111 

4 18 RMSE of target range (Scenario C) (I) conventional radar equipped 

with fixed waveform (dotted line), (n) basic cognitive radar (dashed 

line), and (in) nested cognitive radar (solid line) 113 

4 19 RMSE of target range-rate (Scenario C) (l) conventional radar equipped 

with fixed waveform (dotted line), (n) basic cognitive radar (dashed 

line), and (m) nested cognitive radar (solid line) 113 

4 20 Waveform selection across time (Scenario C) (a) chirp rate for BCR, 

(b) chirp rate for NCR, (c) length of pulse envelope for BCR, (d) length 

of pulse envelope for NCR 114 

4 21 Chattering of range (Scenario C) (a) FWF, (b) BCR, (c) NCR 115 

4 22 Chattering of range-rate (Scenario C) (a) FWF, (b) BCR, (c) NCR 116 

5 1 Chattering effect in Scenario A (a)-(c) range, (d)-(f) range-rate (Re­

produced from Figures 4 4 and 4 5) 129 

5 2 Chattering effect in Scenario B (a)-(c) range, (d)-(f) range-rate (Re­

produced from Figures 4 11 and 4 12) 130 

5 3 Chattering effect in Scenario C (a)-(c) range, (d)-(f) range-rate (Re­

produced from Figures 4 21 and 4 22) 131 

5 4 Block diagram of a low-pass Gaussian filter 135 

5 5 Smgle-sided amplitude spectrum for Gaussian noise before and after it 

is filtered by a Gaussian filter 136 

xvn 



www.manaraa.com

5 6 RMSE of target range for moderate constant-velocity disturbance (1) 

conventional radar equipped with fixed waveform (dotted line), (n) 

basic cognitive radar (dashed line), and (in) nested cognitive radar 

(solid line) 139 

5 7 RMSE of target range-rate for moderate constant-velocity disturbance 

(I) conventional radar equipped with fixed waveform (dotted line), (n) 

basic cognitive radar (dashed line), and (m) nested cognitive radar 

(solid line) 139 

5 8 Chattering of range and range-rate in moderate constant-velocity dis­

turbance (a)-(c) range, (d)-(f) range-rate 140 

5 9 RMSE of target range for moderate constant-acceleration disturbance 

(I) conventional radar equipped with fixed waveform (dotted line), (n) 

basic cognitive radar (dashed line), and (m) nested cognitive radar 

(solid line) 141 

5 10 RMSE of target range-rate for moderate constant-acceleration distur­

bance (l) conventional radar equipped with fixed waveform (dotted 

line), (n) basic cognitive radar (dashed line), and (in) nested cognitive 

radar (solid line) 141 

5 11 Chattering of range and range-iate in moderate constant-acceleration 

disturbance (a)-(c) range, (d)-(f) range-rate 142 

5 12 RMSE of target range for low constant-velocity disturbance (l) con­

ventional radar equipped with fixed waveform (dotted line), (n) basic 

cognitive radar (dashed line), and (m) nested cognitive radar (solid 

line) 143 

xvm 



www.manaraa.com

5 13 RMSE of target range-rate for low constant-velocity disturbance (1) 

conventional radar equipped with fixed waveform (dotted line), (n) 

basic cognitive radar (dashed line), and (m) nested cognitive radar 

(solid line) 143 

5 14 Chattering of range and range-rate in low constant-velocity distur­

bance (a)-(c) range, (d)-(f) range-rate 144 

5 15 RMSE of target range for low constant-acceleration disturbance (l) 

conventional radar equipped with fixed waveform (dotted line), (n) 

basic cognitive radar (dashed line), and (m) nested cognitive radar 

(solid line) 145 

5 16 RMSE of target range-rate for low constant-acceleration disturbance 

(l) conventional radar equipped with fixed waveform (dotted line), (n) 

basic cognitive radar (dashed line), and (m) nested cognitive radar 

(solid line) 145 

5 17 Chattering of range and range-rate in low constant-acceleration distur­

bance (a)-(c) range, (d)-(f) range-rate 146 

5 18 RMSE of target range for high constant-velocity disturbance (I) con­

ventional radar equipped with fixed waveform (dotted line), (n) basic 

cognitive radar (dashed line), and (m) nested cognitive radar (solid 

line) 147 

5 19 RMSE of taiget range-rate for high constant-velocity disturbance (l) 

conventional radar equipped with fixed waveform (dotted line), (n) 

basic cognitive radar (dashed line), and (m) nested cognitive radar 

(solid line) 147 

xix 



www.manaraa.com

5.20 Chattering of range and range-rate in high constant-velocity distur­

bance. (a)-(c) range, (d)-(f) range-rate 148 

5.21 RMSE of target range for high constant-acceleration disturbance, (i) 

conventional radar equipped with fixed waveform (dotted line), (ii) 

basic cognitive radar (dashed line), and (iii) nested cognitive radar 

(solid line) 149 

5.22 RMSE of target range-rate for high constant-acceleration disturbance, 

(i) conventional radar equipped with fixed waveform (dotted line), (ii) 

basic cognitive radar (dashed line), and (iii) nested cognitive radar 

(solid line) 149 

5.23 Chattering of range and range-rate in high constant-acceleration dis­

turbance. (a)-(c) range, (d)-(f) range-rate 150 

xx 



www.manaraa.com

Chapter 1 

Introduction 

Stones from other hills may serve to polish the jade of this one. 

An ancient Chinese proverb 

1.1 The Reason for Cognition in Radar Systems 

The term radar, as an electromagnetic device for target signature acquisition, was 

coined by the U.S. Navy in 1940 as an acronym for RAdio Detection And Ranging. 

For over 60 years, the theory and design of radar systems have been dominated by 

probability theory and statistics, information theory, signal processing, and control, 

whose combined contributions have enabled us to make the radar more adaptive and 

powerful [1]. Needless to say, using these tools coupled with dramatic advances in 

computing and very-large-scale integration (VLSI), we now have a wide array of 

highly sophisticated radar systems, extending from air traffic control (ATC) radar 

to phased array radar, each and every one of which has impacted the civilian as 

well as the military world in its own way. Thanks to many radar researchers and 

1 
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Figure 1.1: (a) Block-diagram representation of processing stages in perceptual tasks; 
(b) Block-diagram representation of processing stages in radar, where the "radar 
environment" is meant to encompass unknown targets embedded in the environment. 

engineers, the functional design of a radar system in completing tasks such as range 

identification, direction estimation, speed measurement, and target classification, etc, 

has now become much easier [2, 3, 4]. 

However, throughout those years the analogy that exists between the visual brain 

and radar has been sadly overlooked in all the radar systems, dated back to the very 

first radio detector invented by Christian Hiilsmeyer in 1904 [5]. Figure 1.1 depicts 

this analogy in its most vivid way, where Figure 1.1(a) is adapted from [6]. What 

2 
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is truly remarkable is how close encoding-decoding, a distinct property of human 

cognition in the visual brain, is to that in radar [7]. The point that we are trying to 

emphasize here is that if we are to build up our knowledge about the fundamentals 

of cognitive radar, there is much that we can learn from the mammalian brain. 

In saying so, we are not belittling the development we have made in the theory and 

design of traditional radar systems, for example the invention of microwave magnetron 

by Randall and Boot in 1940 [8], the modulating algorithms for pulse compression in 

1960 [9], and the intensive development of phased array theory in the 1960s [10], to 

name a few. Rather, we are emphasizing that, through the use of cognition, we are 

indeed able to build a new generation of radar systems, which will be more powerful 

than ever before. To achieve this goal, we need to broaden our kit of tools by adding 

cognitive information processing (including learning theory), the practical impact of 

which is summarized as follows: 

Cognitive information processing is a transformative software technology 

that will significantly impact the theory and design of radar systems, new 

and old. 

To elaborate on this, imagine a radar that interfaces with the environment, the 

feedback link from the receiver to the transmitter is actually missing if we compare its 

current structure, shown in Figure 1.2, with the one shown in Figure 1.1. In Figure 

1.2, we plot the block diagram of a monostatic radar by adapting from [3]. 

An intuitive question we may ask is: Why is it important to build the linkage 

between the receiver and the transmitter! To answer this question, we need to pursue 

our answers in neuroscience. Let us first take the echo-location system of a bat as 

an example [11]: While preying on insects like moth, the bat emits an ultrasound 

3 
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Figure 1.2: Block diagram of a monostatic radar, where the transmitter and receiver 
are co-located. 

signal from his mouth to determine the position, speed and even kind of the targets. 

We call this ultrasound signal the sonar. This process of thought to knowing the 

outside world is scientifically defined as cognition. Cognition represents a faculty for 

processing of information, applying knowledge, and changing preferences. In a classic 

book written by Pylyshyn [12], the foundation of cognitive science is laid down in a 

psychological context. 

Another equally compelling motivation for cognition is the visual brain. In most 

basic terms, the visual brain is characterized by two important functions, perception 

of the environment (the outside world) in one part of the brain and action to control 

the environment in a separate part of the brain [13]. The net result of these two 

functions, working together in a coordinated fashion, is the perception-action cycle; 

this basic cycle is indeed the brain's counterpart to the information-processing cycle 

in a cognitive radar that was described in [14]. 

To summarize our initiatives of introducing cognition into the current radar sys­

tems, we may list the following points: 



www.manaraa.com

Ph D Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

• The ever-mcreasing power of computers makes it possible to select a wide range 

of radar signals that were seen before as a physical limitation, 

• The development of nonlinear tracking algorithms and waveform control tech­

niques were treated separately, and combining them offers a great potential, 

• The research of cognitive science has undergone almost four decades, starting 

from Pylyshyn's early work to Fuster's m-depth descriptions of the cognition, 

and we are now in a phase of transferring cognitive science into cognitive engi­

neering \ and most importantly, 

• The global feedback from the receiver to the transmitter is an enabler of com­

putational intelligence 

1.2 Literature Review 

In this section, we review the literature preceding the birth of Haykm's paradigm of 

cognitive radar (CR) Needless to say, it is impractical to make this review complete 

and comprehensive Nevertheless, we expect that this list of the related research can 

pave the way for interested researchers to conduct future research 

As a cross-disciplmary research topic, the background of cognitive radar spans 

over radar signal processing, information theory, control theory and neuroscience 

Actually, for over four decades, most of the research efforts devoted to this area share 

the same motivation to increase the flexibility of the radar waveform and enhance 

the performance of radai detection and tracking But few researchers have tried to 

'Wc define "cognitive engineering" as the research that can utilize the theoretical achievements 
obtained from cognitive science m a system engineering's manner 
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address this issue in an outside-of-the-box manner 

Because of the incapabilities in waveform generation techniques for both hard­

ware and software, the earlier work has been focusing on the design of ambiguity 

function attributed to the standard range-Doppler ambiguity function description of 

Woodward [15] Right after the publication of Woodward's classic book on ambiguity 

function, many excellent improvements have been made on the properties of various 

waveform classes and their ambiguity functions To be more specific, ambiguity func­

tion enables us to represent the time-frequency autocorrelation functions of the radar 

waveform on the delay-Doppler domain, with the peak centered at the origin It is 

amazing that even half a century after the introduction of the ambiguity function, 

many researches including this thesis still utilize some crucial properties that this 

function has to study the waveform property For some exemplary ambiguity func­

tions, we may refer to [16] (Chapter 10, vol 3) Overall, bearing the importance of 

ambiguity function in mmd, we must stress that the early work strictly depended on 

the radar task As such, the waveform was designed in an off-line fashion 

To the best of our knowledge, the earliest research that has considered the adap-

tivity of the waveform transmission was due to Delong and Hofstetter [17, 18] Their 

1967 and 1969 papers studied the adjustable pulse amplitudes and adjustable pulse 

phases with limited dynamic range, respectively By maximizing signal-to-mterference 

as the performance matnc, they constructed a nonlinear programming problem and 

then solved it using the Karush Kuhn-Tucker (KKT) theorem [19] Their theoretical 

study was aimed at optimal waveform design However, the sequence of succes­

sively better signals obtained provides considerable improvement in performance a 

sub-optimal sense The Delong-Hofstetter algorithm has been proven equivalent to 
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perfect clutter suppression m an environment highly dominated by clutter [20] 

It is noteworthy to point out that these early attempts were derived directly from 

the fact that a radar is first of all a sensor With the advance of digital computer 

and signal processing technology, the functions that a radar can perform are both 

diversified and specialized For example, two of the main functions are detection and 

tracking For a detection radar, we need to test two hypotheses for the cell under 

study, Ho (the target is absent) and Hi (the target is present), for the tracking prob­

lem, the radar is designed to estimate the state of a moving target The design of 

optimal waveform is then task-dependent for detection task, the optimal radar wave­

form should be able to put as much transmitted energy as possible into the largest 

mode of the target to maximize the output signal-to-noise ratio (SNR), and for esti­

mation task, the optimal radar waveform should allocate the energy as efficiently as 

possible among the different modes of the target to maximize the mutual information 

between the received signal and the target signature 

Two mainstream schools of waveform design appeared around the 60's and late 

80's the control-theoretic approach and the information-theoretic approach, respec­

tively 

• Control-Theoretic Approach: The earliest literature on optimal waveform 

design via control-theoretic approach was due to Athans [21] Two tricks em­

ployed by Athans in [21] are still very much valid, which are 

— The Kalman-Bucy theory is used to formulate an optimization algorithm 

with states being the elements of the covanance matrices, control being the 

radar waveform, and cost being a function of the covanance matrix 

- Under the physical constraints of total energy and peak amplitude, the 
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time-dependent optimal waveform must alternate between its peak-power 

and zero-power levels 

Even though research after Athans followed this idea to some extent, the first 

sound foundation under the control-theoretic approach can be found m [22] 

With the advent of digital waveform generators that are capable of generating 

almost any form of radar signals, the waveform design should be considered as 

an integral part of the overall tracking system A radar equipped with different 

waveforms has a different resolution and thus, leads to a different measurement 

error Mathematically, we denote by 0 the radar waveform and z as the mea­

surement, the covanance matrix for the measurements noise can be represented 

as a function of 0, I e , R(0) From the systems engineering viewpoint, the 

waveform design problem is to find the optimal tracking filter and waveform 

parameters that give us a minimum covanance of the target state m an on-line 

fashion It is noteworthy to point out that this work is based on the linear 

tracking problem and a clutter-free environment Thus, the theory is derived 

in the context of Kalman filter Kershaw and Evans extended their research m 

a later paper [23] to study the data association algorithm in a cluttered envi­

ronment Following this line of thinking and also thanks to the development of 

nonlinear filtering, e g the extended Kalman filter (EKF) [24], the unscented 

Kalman filter (UKF) [25], and particle filter (PF) [26], m recent years, many 

other researchers have extended Kershaw and Evans's work to encompass the 

tracking of maneuvering targets in both clutter-free and cluttered environments 

[27, 28] 

• Information-Theoretic Approach: The pioneer work done by Woodward 
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and Davis [15, 29, 30] was the earliest investigation of possible application of 

information theory to radar system Bell was the first person to consider the 

use of information theory in radar waveform design [31, 32] Bell assumed a 

random extended target Recent work done by Leshem et al [33] has extended 

Bell's work to incorporate multiple extended targets using multiuser information 

theory [34] Those elegant theories of radar waveform design nevertheless have 

to be greatly discounted for their lack of enough flexibility when it comes to 

generate desired waveform in practical systems On the other hand, with the 

requirement of multiple functional radar systems, a waveform that can fulfill 

or smoothly switch between these tasks will assist a radar to outperform its 

competitors Since we know that a large SNR margin that is beyond the SNR 

detection threshold does not make more sense for battlefield, a waveform that 

can carry more information about the target based on the satisfaction of its 

SNR detecting threshold will be more useful Obviously, a radar that can gam 

more information about the target is better than a detection-only radar 

Based on the above-mentioned facts, we have done some preliminary study 

to efficiently synthesize waveforms with the aim of providing a trade-off be­

tween estimation performance for a Gaussian ensemble of targets and detection 

performance for a specific target [35] In particular, this method synthesizes 

(finite length) waveforms that achieve an inherent trade-off between the (Gaus­

sian) mutual information and the SNR for a particular target Moreover, this 

method can accommodate a variety of constraints on the transmitted spectrum 

However, the optimal waveform design algorithm assumes the presence of radar 

scene analyzer that informs the design algorithms of the impulse response of a 
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specified target and power spectral density of the Gaussian ensemble In prac­

tice, these terms may not be known precisely A similar technique can also be 

found m [36] 

In line with the research efforts made by the radar community, the psychological 

and computational study of the human brain that branches to neural network, arti­

ficial intelligence and cognitive science was also making progress in their individual 

ways As an actual fact, researchers' desire to understand the underlying mechanism 

of human brain has never stopped An ancient Chinese proverb says you never 

know the shape of a mountain as long as you are in it It is similarly impossible to 

study our own human nature The most optimistic result that we could obtain is 

the functional simulations In building the unified theories of cognition, Newell [37] 

admitted that the list of areas that we need to cover may be infinite, to name a few 

problem solving, decision making, routine action, memory, learning, perception, lan­

guage, emotion, dreaming daydreaming, etc For a dynamic system like the human 

bram, time plays a key role in its input-output behaviour This system is built up 

of a hierarchy of multiple systems The subsystems are linked together to produce 

the human behaviour at the system level Echoing the division of frequency band in 

radar community, Newell divided the time scale of human action into four bands [37] 

1 The biological band, at the bottom level, operates in a range from microseconds 

to milliseconds It is composed of neurons that transmit pulses at a high speed 

An aggregation of tens of thousands of neurons makes the neural circuit It is 

this level that has engaged many researchers to propose different forms of neural 

network structures m a way to emulate brain's behaviour Some famous neural 

networks including the perceptron [38], multilayer perceptron (MLP) [39], radial 
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basis function (RBF) network [40, 41], support vector machine (SVM) [42], 

echo-state network (ESN) [43, 44], etc. For detailed description and illustrative 

experiments, the reader may refer to [7]. 

2. The cognitive band operates in the range from hundreds of milliseconds to sec­

onds. This band is regarded as the apparatus that interfaces the neural circuits 

with general cognition. The cornerstone book, namely, Computation and Cogni­

tion, written by Pylyshyn is mostly concerned with this band [12]. Specifically, 

the science of studying the cognitive band forms the common ground of cog­

nitive science. Fuster's book on Cortex and Mind: Unifying Cognition [13] is 

the first one to explain the essential transactions underlying cognition of differ­

ent networks in hierarchies. His viewpoint of perception-action cycle underlies 

the foundational blocks of our current understanding of the human brain. To 

our knowledge, Fuster's work could be regarded as the best interpretation of 

cognition in the literature. 

3. The rational band, at the knowledge level, operates from minutes to hours de­

pending on the specific task. 

4. The social band, at the highest level, operates from days to months and even 

years. It provides the platform for human beings to communicate with each 

other in a way to form the order or law in the society. 

The rational band and social band are very much beyond the scope of system engi­

neering. Readers may refer to [37] for more information. 

Having conducted an overview of related works on the radar community and 

cognitive science, we have attempted to show how concepts from these two disciplines 
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converge, thus giving birth to a new generation of radar system, namely cognitive 

radar To this end, two solid steps have been taken 

1 In [14], the idea of Cognitive Radar was described for the first time Four 

essential points were emphasized in a conceptual manner Bayesian filtering 

in the receiver, dynamic programming in the transmitter, memory, and global 

feedback to facilitate computational intelligence Three important conclusions 

are made in [14] 

(a) For a radar to be cognitive, the radar transmitter has to learn from con­

tinuous interactions with the environment The radar must be intelligent 

enough to make use of the information extracted by the receiver This 

indicates that existing radar systems do not incorporate intelligence 

(b) Feedback is a new component that must be embedded in the current radar 

systems to facilitate computational intelligence 

(c) Information preservation, indicated even in Shannon's paper in an implicit 

way [45], is crucial to the receiver's performance, which indirectly affects 

the performance of the transmitter In this context, the Bayesian approach 

is the paradigm of choice 

2 In [46], the underlying theory of cognitive radar for tracking applications was 

presented for the first time ever, with emphasis being placed on the cubature 

Kalman filter to approximate the Bayesian filter m the receiver, approximate 

dynamic programming for transmit-waveform selection in the transmitter, and 

global feedback embodying the transmitter, the radar environment, and the 

12 



www.manaraa.com

Ph D Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

receiver all under one overall feedback loop We name this system the cog­

nitive tracking radar (CTR) Simulation results presented therein substantiate 

practical validity of the superior performance of a CTR over a traditional radar 

1.3 Scope of the Thesis 

After discussing the related literature, we are now ready to describe the problem 

this thesis has tackled Here we may remind ourselves that a radar system, should 

it be cognitive or non-cognitive, covers a wide domain of research topics that may 

go beyond any individual researcher's work This thesis focuses on the fundamental 

theory and demonstrative experiments of a scrutinized cognitive radar building on the 

pioneering paper on cognitive radar [14] The following components are underscored 

• Cubature Kalman filter (CKF) is claimed to be the best known approximation 

to the optimal Bayesian filter under the Gaussian assumption We start from the 

linear tracking using classic Kalman filter to nonlinear tracking using Cubature 

Kalman filter The continuous-discrete model is also studied to encompass 

practical radar systems, based on which the recently developed continuous-

discrete cubature Kalman filter (CD-CKF) is used as the optimal Bayesian 

filter under the Gaussian assumption 

• Dynamic programming is chosen to be the algorithm for selecting the waveform 

Its special case, namely dynamic optimization, is studied in an effort to provide 

a computationally efficient solution to the transmitter 

• Mean-squared error (MSE) is used in the formulation of the feedback-information 

metric that connects the receiver to the transmitter through a feedback link 
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• Beside the perception function, three other components, namely memory, at­

tention and intelligence, are included to compose a memory-assisted cognitive 

radar system Neural networks are used to build the memory elements 

1.4 Contributions 

As the first doctoral dissertation on cognitive ladai, this thesis paves the way to­

ward the study of an emerging discipline cognitive dynamic systems (CDS) [47] A 

new member of cognitive radar is proposed, namely the nested cognitive radar The 

contributions of our research are summarized as follows 

• The fundamental theory of cognitive radar is refined to reflect the recent devel­

opment of optimal Bayesian filter theory Realizing the impact that CKF may 

have on the tracking performance, this thesis selects the CKF as the tracking 

filter and shows that CKF is the method of choice in optimal filtering For prac­

tical systems that has continuous system-equation and discrete measurement-

equation The continuous-discrete cubature Kalman filter (CD-CKF) algorithm 

is selected as the tracking filter 

• Approximate dynamic programming theory is employed to tackle the imperfect 

state-information problem The computational cost is also analyzed for the 

dynamic programming problem with a horizon depth of L The special case of 

L = 1 is named dynamic optimization Approximation techniques are studied 

to address this problem The computational complexity for the general case of 

dynamic programming is also analyzed 

• Adopted from architecture of visual cortex, the nested structure for cognitive 
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radar is constructed, where perceptual memory, executive memory and coor­

dinating perception-action memory are designed in bottom-up and top-down 

manners The memories are composed of three independent multilayer per-

ceptrons networks Back-propagation algorithm is used to tram the networks 

off-line and generalized Hebbian algorithm is used to tune the memories on-line 

• To validate the new structures, comprehensive computer simulations are con­

ducted for three cases linear target tracking, object falling in space, and high-

dimensional continuous-discrete model target tracking 

• In-depth analysis of the simulation results reveals two underlying physical phe­

nomena of cognitive radar First, to provide a good performance for state-error 

reduction, the measurements will offer a variety of deviations We call this 

phenomenon the chattering effect Mathematical model of the chattering in an 

Cp sense is also proposed, Second, to study the behaviour of cognitive radar 

m external disturbance, we simulate the scenario that a linear travelling target 

encounters a disturbance for a short duration 

1.5 Organization of the Thesis 

The rest of the thesis is organized as follows 

• Chapter 2 describes the fundamental theory of cognitive radar enabled with the 

basic perception-action cycle Two important components include the optimal 

Bayesian filtering in the receiver and the optimal waveform selection in the 

transmitter Specifically, the dynamic optimization algorithm is derived in this 

chapter as a special case of dynamic programming 
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• Chapter 3 develops a cognitive radar system with enhanced intelligence Four 

components of the new systems include perception for information categoriza­

tion, memory, attention, and intelligence We name this new cognitive radar 

system the nested cognitive radar in that three memories, 1 e perceptual mem­

ory, executive memory, and coordinating perception-action memory, are em­

bedded within the basic perception-action cycle Both the system aspect and 

algorithmic aspect of this system are discussed 

• Chapter 4 evaluates the performance of the cognitive radar for three different 

applications They are (1) linear target tracking, (n) object falling in space, 

and (in) high-dimensional continuous-discrete model target tracking 

• Chapter 5 discusses the two underlying physical phenomena in cognitive radar, 

they are the chattering effect and behaviours in multi-mode disturbance Math­

ematical definition that explains the chattering effect is also provided Simu­

lations are also conducted to observe the behaviours of cognitive radar in low, 

moderate and high disturbances 

• Chapter 6 summarizes the thesis and suggests three topics to continue the re­

search in the future First, a new lower bound needs to be proposed m a 

cognitive radar system Second, continued research about the chattering effect 

is also expected to discover the reason behind the impressive performance en­

hancement m cognitive radar Lastly, more m-depth study of the behaviour of 

a cognitive radar in presence of external disturbance may reveal the potential 

of cognition in dealing with a complicated scenario 
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Chapter 2 

Basic Cognitive Radar 

A bird is an instrument working according to a mathematical law It lies 

within the power of man to make this instrument with all its motions 

Leonardo Da Vinci (1452-1519) 

In [14], the idea of cognitive radar was described for the first time in a seminal 

paper Motivation for this new idea was the echo-location system of a bat [11] An­

other equally compelling motivation for cognitive radar is the visual bram In most 

basic terms, the visual bram is characterized by two important functions, perception 

of the environment (the outside world) in one part of the bram and action in the 

environment m a separate part of the bram [13] The net result of these two func­

tions, working together in a coordinated fashion, is the perception-action cycle This 

basic cycle is indeed the brain's counterpart to the information-processing cycle in a 

cognitive radar that was described in [14] Another way to see the close relationship 

between cognitive radar and the visual bram is to examine the coding-decoding func­

tion Here again, it is rather striking to find that this basic property of cognition in 
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the brain and its counterpart in cognitive radar are ever so closely analogous [7]. 

With optimal performance as the goal, the ideal way to build a cognitive radar is 

to look to the optimal Bayesian filter [48] as the central functional block in the receiver 

for perception of the environment, and Bellman's dynamic programming [49] as the 

central functional block in the transmitter for action to control the environment. 

Naturally, there has to be feedback from the receiver to the transmitter to make it 

possible for the receiver to send relevant information about the environment to the 

transmitter. In so doing, global feedback embodies the two parts of the radar system 

and the environment under a single overall loop operating in an on-line manner, 

and with it the radar becomes computationally intelligent. Here again, if we are to 

examine the visual brain, we will find that, unlike perception and action, there is no 

single functional block that takes care of intelligence; rather, this important function 

is distributed through feedback across many parts of the brain. 

From this introduction, we see that the cognitive radar system mentioned here 

manifests a basic characteristic, i.e., basic perception-action cycle. In consideration 

of the development of cognitive radars with enhanced sophistication and information 

processing power in Chapter 3 and possibly in the future, we name this the basic 

cognitive radar (BCR) under the following points: 

• Inclusion of global feedback from the receiver to the transmitter, 

• Exclusion of memory, and 

• Exclusion of attention. 

We may now describe the baseband model of the signal transmission link. 
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2.1 Model of Radar Measurements in Baseband 

A commonly used method to control selection of the transmit-waveform is to equip 

the transmitter with a digitally implementable waveform generator that embodies a 

prescribed library of waveforms To elaborate, when we speak of a baseband model, we 

mean a band of frequencies determined by the waveform-generator's spectral content 

For designing the waveform generator, we have opted for linear frequency modulation 

(LFM) combined with Gaussian pulse for amplitude modulation With fc denoting 

the carrier frequency of the transmitted radar signal, sr{t), we may now use complex 

baseband theory to express it as follows 

sT{t) = v / 2 R e { v / ^ s ( 0 e x p ( j 2 ^ / c i ) } , (2 1) 

where ET is the transmitted signal energy, Re{ } denotes real part of a complex value, 

and s(t) is the complex envelope of sr(t), for complex baseband theory, see [50] 

The radar echo reflected from the target received at the receiver input is corre­

spondingly defined by 

r(t) = sR{t) + n(t), (2 2) 

where sR(t) is the signal component of r(t) and n(t) is the additive white Gaussian 

noise, both of which are centered on the earner fiequency fc Invoking complex 

baseband theory, we may define sR(t) as follows 

sR(t) = v^Re {^/E~R~s{t - T)exp(j2Tr{fct + fDt))} , (2 3) 

where ER is the received signal energy, r = 2p/c is the delay of the received signal 
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with p denoting the range of the target, and c denoting the speed of electromagnetic 

wave propagation (1 e the speed of light), fo is the Doppler shift defined by 2fcp/c 

with p denoting the range rate of the target, assuming that the target is moving 

toward the radar Finally, n(t) denotes the complex envelope of the noise n(t) at the 

receiver input Throughout the paper, it is assumed that the transmitted radar signal 

is narrowband, which means the complex envelopes s(t) and n(t) in the baseband 

model occupy a frequency band small in comparison to the carrier frequency fc 

The idea behind baseband modeling, exemplified by the complex envelopes s(t) 

and n(t), is that both of these components are low-pass in their spectral characteris­

tics, whereas the band-pass transmitted signal sr(t) and received signal r(t) are more 

difficult to handle Most importantly, baseband modeling dispenses with the carrier 

frequency fc and there is no loss of information in basing the radar signal analysis on 

complex envelopes 

2.1.1 Bank of Matched Filters and Envelope Detectors 

At the front end of the receiver, typically, we have a bank of matched filters, shown 

in Figure 2 1 The impulse response of a matched filter is defined by the conjugate of 

the complex transmitted signal envelope s(t), shifted m time as well as frequency by 

scaled versions of desired time- and frequency-resolutions, respectively Recognizing 

that a matched filter is basically equivalent to a correlator, it follows that the bank 

of matched filters acts as a time-frequency correlator of the complex transmitted 

signal envelope with itself In the absence of receiver noise, the squared magnitude 

of this correlation constitutes the ambiguity function [15] Every matched filter in 

the filter bank is therefore followed by a square-law envelope detector The resulting 
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real-valued two-dimensional output of each envelope detector, involving time delay 

and Doppler shift, defines an inter-pulse vector denoted by z*, where the subscript 

k denotes discrete time. This vector performs the role of measurement vector in the 

state-space model of the radar target, discussed next. 

m > 

Bandpass 
Matched Filter 

Bandpass 
Matched Filter 

Bandpass 
Matched Filter 

Square-Law 
Envelope Detector 

Square-Law 
Envelope Detector 

Square-Law 
Envelope Detector 

arg max[ ] = z* 

Figure 2.1: Bank of matched filters 

2.1.2 State-Space Model of the Target 

A: Discrete Model 

There are two equations in the discrete state-space model of a radar target: 

System equation, which describes evolution of the target's state across time in 

accordance with the nonlinear equation: 

Xfc = f (x f c _i) + Vfc, (2.4) 

where x* € RNr denotes the state of the radar target at discrete time k, and v^ 

denotes the additive system noise accounting for environmental uncertainty about 

the target. 
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Measurement equation, which describes dependence of the measurement vector 

z/j £ WN* on the state x/t, the waveform vector Ok-i, and the measurement noise w^, 

as shown by [51] 

zfc = hfc(xfc,0fc_i,wfc). (2.5) 

Assuming that the measurement noise wfc is an additive white Gaussian process 

dependent on the waveform vector 6k-i, Eq. (2.5) can be further simplified as 

zfc = h(xfc) + wfc(0fc_!), (2.6) 

where Wk(Ok-i) denotes the measurement noise that acts as the driving force. In 

the rest of this thesis, we will simplify the notation of measurement noise as w^. It 

is in the dependence of this noise on the waveform-parameter vector 0k-\ that the 

transmitter influences accuracy of the state estimation in the receiver. 

B: Hybrid Model 

For many tracking problems, dynamics of the target are described by a continuous-

time system equation. Therefore, Eq. (2.4) is not applicable any more. Consider the 

system equation being described by [52]: 

dx(t) = f(x(i),t)dt + v/Qd/3(t). (2-7) 

where x(£) £ MNr denotes state of the system at time t; /3(t) £ RNr denotes the 

standard Brownian motion with increment df3(t) that is independent of x(Z) and it 

plays the same role as system noise as in Eq. (2.4), f : M.NT X M. —* RNr is a known 

nonlinear function with appropriate regularity properties; and Q £ M.N*xNr is called 
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the diffusion matrix. State of the system can be inferred through noisy measurements 

sampled at time tk = kT using the same measurement equation as (2.6). It is also 

assumed that the initial conditions and noise processes are statistically independent. 

To discretize the stochastic differential equation (2.7) in an efficient manner, we 

may use the Ito-Taylor expansion. Ito-Taylor expansion of higher order is theoreti­

cally more accurate than that of lower order [53]. Applying the Ito-Taylor expansion 

of order 1.5, chosen because of its most effective approximation capability, to the 

stochastic differential equation over the time interval (t, t + S), we have 

x{t + 6) = x{t) + 5t (x(t), *) + ^ 2 ( L 0 f (x(i), t)) +^QUJ + (Lf (x(t), *))</>, (2.8) 
v v / 

frf(xt,t) 

where we have the following notations: 

• L0 and Lj(j = 1,2,..., Nx) are two differential operators, defined by 

u - | + E * £ 4 E ^ > ^ ^ <2-9> 
1=1 j,p,q=l y v 

L, = E v ^ ^ ; (2-io) 
2 = 1 * 

• Lf denotes a square matrix with its (i,j)-th entry being Ljfj, (i,j = 1,2, ...,NX); 

• fd(xt,f) is the discretized noise-free system equation; 

• Pair of correlated ,/Vx-dimensional Gaussian random variables (u;, ip) can be gen­

erated from a pair of independent ^-dimensional standard Gaussian random 

23 



www.manaraa.com

Ph D Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

variables (u!,u2) as follows 

u; = V5ur (2 11) 

using which, three covanance matrices can be obtained as follows 

E [uuT] = SlNl (2 13) 

E[ur0T] = l-52\Nr (2 14) 

E[VVT] = \plNr (2 15) 

Examination of the system noise m Eqs (2 4)/(2 7) and measurement noise m Eq 

(2 6) reveals an important physical fact in modeling the radar target, that is 

The evolution of the target's state is governed by the target's dynamics 

itself, independent of the radar system The radar interacts with the target 

only when the measurement system is switched on 

Application of the state-space model described in Eqs (2 4)/(2 7) and (2 6) hinges 

on the following four basic assumptions 

• First, the nonlinear vectorial functions f( ) and h( ) in Eqs (2 4) and (2 6) are 

both smooth and otherwise arbitrary 

• Second, the system noise v^ and measurement noise w^ are zero-mean Gaussian 

distributed and statistically independent of each other 

• Third, the covanance matrix of system noise is known 
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• Fourth, the state is independent of measurement noise. 

Examining Eqs. (2.4) and (2.6), we immediately see that the state x^ is hidden 

from the observer, and the challenge for the receiver is to exploit dependence of the 

measurement vector on the state to compute an estimate of the state and do so in a 

sequential and on-line manner. 

With this objective in mind, we need to determine statistical characteristics of 

the measurement noise w^. To this end, we first recognize that the measurement 

noise covariance is dependent on the parameter Ok-i of the waveform generator in 

the transmitter [22], hence the notation Rfc(0fc_i) for this covariance, here we define 

6k-\ = [A, b] with A and b denoting the duration of Gaussian pulse and chirp rate, 

respectively. Moreover, the inverse of the Fisher information matrix (FIM) is the 

Cramer-Rao lower bound (CRLB) on the state estimation error covariance matrix 

for unbiased estimator [16]. Denoting the Fisher information matrix by J, we may 

consider the inverse matrix J - 1 as a suitable characterization for optimal waveform 

selection, and thus write 

Rfc(0fc_1) = r j - 1 (e f c_ 1 ) r , (2.16) 

where T is a symmetric matrix defined by 

diag c c 
2'4TT/C 

(2.17) 

For convenience of presentation, it is desirable to separate the contribution of the 

waveform parameter vector in the Fisher information matrix from the received signal 
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energy-to-noise spectral density ratio (1 e the SNR) defined by 

2ER 

No ' 
(2 18) 

where NQ IS spectral density of the complex noise envelope n(t) To this end, we write 

J(0fc_j) = r?U(0fe_O (2 19) 

Accordingly, we may rewrite Eq (2 16) in the desired form [23] 

Rfc(0fc_O = - r u - ^ - O r , 
v 

(2 20) 

with the matrix \J(0k-i) being merely a scaled version of the Fisher information 

matrix J(#fc_x) This new matrix is a symmetric matrix whose three elements are 

described as mean-square values of the following errors 

• the Doppler estimation error, 

• the cross Doppler-delay estimation error, and 

• the delay estimation error 

In [22], it is shown that for the transmit waveform, combining linear frequency 

modulation (LFM) with Gaussian amplitude modulation, the measurement noise co-

variance matrix is given by 

Rfc(# fc-l; 

c2A2 

277 

c2b\2 

27r/cr? 

c2b\2 

2TT/C?7 

c2 M i ih2\A 
(2nfcy

2
V \2X* ' "b A ) J 

(2 21) 
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where, as before, b denotes the chirp rate of the LFM pulse and A denotes the duration 

of the Gaussian pulse for the LFM pulse Gathering these two parameters, we have 

the transmitted waveform parameter vector 6 = [A, b] 

It is important to note however that this formula for H.k(6k-\) is valid so long 

as the assumption that the energy per transmitted waveform remains constant from 

one cycle to the next Otherwise, we would have to expand the waveform parameter 

vector 6k-\ by adding a new variable r)k-\ 

Having the state-space model of the target, we are now ready to describe the 

perception-action cycle in its most basic form 

2.2 Basic Perception-Action Cycle 

In a cognitive radar, perception of the environment m the receiver leads to an action 

taken by the transmitter on the environment in accordance with the basic perception-

action cycle of Figure 2 2 It is through the continuation of this cycle across time 

that the system acquires its ability to adapt to changes in the environment by mak­

ing successive internal changes of its own through lessons learned from continuing 

interactions with the environment 

The integration of functions involved m the perception-action cycle across time is 

a distinctive characteristic of cognition m that time plays three key roles [13] 

1 Time separates incoming sensory signals (stimuli) so as to guide the overall 

system behaviour 

2 Time separates sensory signals responsible for perception m the receiver from 

actions taken m the transmitter 
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Environmental 
Scene Actuator 

smitter 
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Feedback-information metric 
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Environmental 
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Observables 

Figure 2.2: The perception-action cycle in its most basic form 

3. Time separates the occurrence of sensory feedback from further action. 

The implication of these three points is profound: 

Temporal organization of the system behaviour requires the integration 

across time of the following: 

• percepts with other percepts; 

• actions with other actions; and 

• percepts with actions. 

Simply put, the integration of functions in the perception-action cycle, irrespective 

of its structure, is a defining property of cognitive radar systems. Hereafter, we refer 

to this property as the cognitive functional integration-across-time property. 

2.3 Optimal Bayesian Filtering of Environmental 

Perception 

For a cognitive radar to perceive the environment in which it operates, the radar must 

be equipped with an appropriate set of sensors to learn from the environment. To be 
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specific, antennas are placed at the front end of the radar receiver so as to couple it 

electromagnetically to the environment. By the same token, another set of antennas 

is placed at the output of the radar transmitter so as to couple it electromagnetically 

to the environment in its own way. 

The sensors in the receiver feed a functional block called the environmental scene 

analyzer, its function is to perform perception, defined as follows: 

Definition 2.1 (Perception). Perception is the sensory analysis of the incoming 

stimuli aimed at learning the underlying physical attributes that characterize the en­

vironment. • 

Exact composition of the scene-analyzer is naturally dependent on the applica­

tion of interest. For example, in a cognitive radar designed for target tracking, the 

environmental scene analyzer consists of a sequential state estimator, the function of 

which is to estimate the state of the target across time in a sequential manner. 

As we may know that the optimal Bayesian filter is the ideal tool for tracking the 

target's state in the radar receiver. Optimal Bayesian filtering is a general probabilis­

tic approach to estimate the posterior density of the state over time by using new 

measurements. The optimal Bayesian filtering consists of the following two steps: 

• Propagation of the old posterior density at the current time without incorpo­

rating the current measurements. This step is also called the time update. 

• Using Bayes's rule to combine the a priori prediction and the current measure­

ments. This step is also called the measurement update. 

Typically, the two steps are executed one after another. The time update step 
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advances the state estimate followed by the measurement update step upon the avail­

ability of a new observation The measurement update then becomes the starting 

point for next update step Under the linearity and Gaussianity assumptions, the 

Kalman filter (KF) is equivalent to the optimal Bayesian filter [54] However, if we 

are faced with a discrete-time nonlinear filtering problem as expressed by Eqs (2 4) 

and (2 6), KF is not applicable We need to approximate the optimal Bayesian filter 

One well-known approximation to the Bayesian filter is the extended Kalman filter 

(EKF) [24] EKF is based on the linear approximation of dynamics obtained from 

the first-order Taylor series approximation of the system and measurement equations 

Mean vector and covanance matrix are the statistics propagated by the algorithm 

The computational complexity of a real-time EKF algorithm is of the order of N% for 

estimating state vectors of dimension Nx The accuracy of the estimation is adequate 

for mild nonhneanties and Gaussian noise [55] 

Another popular algorithm is the unscented Kalman filter (UKF) [25] UKF is 

based on the idea that the approximation of a probability distribution is easier than 

the approximation of a nonlinear function It uses a deterministic sampling method 

called unscented transform to choose a minimal set of sample points around the mean 

The chosen sample points, which are also known as sigma points, are propagated 

through the nonlinear functions in order to update the mean and covanance of the 

estimate UKF provides a significant improvement compared to EKF m the presence 

of sever nonhneanties and Gaussian noise 

However, if the assumption of Gaussianity is violated, we can employ the parti­

cle filter (PF) [26] Complete probability density conditioned on the measurements 

is the statistics propagated by the PF algorithm To predict statistics from one 
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measurement to the next, Monte Carlo integration using importance sampling is em­

ployed Also, to correct the statistics at measurement time, Monte Carlo sampling of 

the conditional density using both importance sampling and resampling is employed 

However, it is computationally demanding especially for high-dimensional problems 

[55] 

It is computationally mfeasible to directly derive the Bayesian filter for a discrete-

time nonlinear state-space model as expressed by Eqs (2 4) and (2 6), hence the 

practical need for its approximation The aforementioned filters, EKF, UKF, and PF, 

are all approximations of optimal Bayesian filter Recently, another nonlinear filter, 

namely the cubature Kalman filter (CKF) [56], was developed as the closest known 

approximation to the Bayesian filter that could be designed m a nonlinear setting 

under the key assumption The predictive density of the joint state-measurement 

landom variable is Gaussian The CKF algorithm is summarized in Appendix A for 

the purpose of implementation and discussion in the rest of the thesis 

By the same token, for a continuous-discrete system, the system equation (2 8) 

describes a process with infinite steps of time update Following the Ito-Taylor expan­

sion, we need to predict m consecutive steps until the new observation is available, 

where m = j Thereafter, we need a Bayesian filtering algorithm with m-step pre­

dictions and one-step update We also know that it is impractical to implement the 

optimal Bayesian filter due to the integrals that need to be evaluated when comput­

ing the posteriors Again, we approximate it using the cubature rules [57] Following 

this way of thinking, another new filter was recently described in [58] and named the 

continuous-discrete cubature Kalman filter (CD-CKF) Similarly, for the same pur­

pose of algorithmic implementation, CD-CKF is summarized m Appendix B Needless 
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to say, the variants of EKF and UKF for a continuous-discrete system, namely CD-

EKF [52] and CD-UKF [59], are both applicable but proven to be inferior to CD-CKF 

[58] 

In the rest of this chapter, we will base our discussion on the CKF for a discrete-

time nonlinear system and the CD-CKF for a continuous-discrete nonlinear system 

2.4 Dynamic Optimization for Waveform Selection 

Previously we remarked that the measurement covanance in the measurement equa­

tion (2 6) depends on the transmitted waveform parameter vector 6 = [A, b], which 

applies to LFM with Gaussian amplitude modulation Hence, if the waveform pa­

rameters are selected optimally, any action taken by the transmitter will be regarded 

as an optimal reaction to the environment perceived by the receiver We call this the 

action-reaction cycle, equivalent to the perception-action cycle in an inverse sense 

Interestingly, this statement interprets a basic common sense For any action applied 

to the system, there will be correspondingly a reaction made by the system With 

this point in mind, we may now address the algorithmic formulation for waveform 

selection in the transmitter We name this the dynamic optimization algorithm, con­

sidering that it is a special case of dynamic programming in case of only one step 

into the future In effect, dynamic optimization assumes the role of a controller in 

a nonlinear feedback system that tunes the transmit-waveform parameters so as to 

tame the behaviour of the receiver m an effort to minimize the tracking errors in some 

statistical sense 

It is assumed that z0 is the initial condition for the perception-action cycle, and 

the cognition is wired to start from this initial observable The transmitter then 
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operates on the cost-to-go function (computed from the receiver output) to produce 

a waveform parameter vector 9Q on which radar waveform will be transmitted at 

next cycle k = 1, which correspondingly leads to a new observable zi This cycle 

runs recursively for k = 2,3, Unfolding the perception-action cycle, we have 

zo —* do —¥ —> Zfc —> ®k 

However, if we were to follow the aforementioned action-reaction cycle, the initial 

condition is the waveform parameter 9Q, iather than the observable z0 The cognition 

is switched on upon the receipt of a new observable zk for k — 1, 2, The transmitter 

then operates on the cost-to-go function to produce a waveform parameter vector 9k 

on which radar waveform will be transmitted at next cycle k + 1 Similarly, unfolding 

the action-reaction cycle yields 9Q —> zi —> —> 9k-\ —> zk 

To avoid confusion, the rest of the thesis will assume that cognitive radar system 

starts from an initial observable zo Before proceeding further, two other important 

remarks also deserve particular attention 

• First, when a cognitive tracking radar is viewed as a feedback control system, 

the basic perception-action cycle is also regarded as a measurement-waveform 

selection cycle, that is, z& —> 9k, where k denotes the current cycle In other 

words, the measurement zk made by the receiver at cycle k leads to waveform 

selection 9k to be transmitted at the next cycle, I e , k + 1 

• Second, the state of the target is hidden from the receiver, which, in turn, poses a 

practical problem in the following sense The formulation of Bellman's dynamic 

programming, a general case of our dynamic optimization algorithm, not only 

demands that the environment to be Markovian but also the controller has 

perfect knowledge of the state In reality, however, the transmitter of a radar 
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tracker has an imperfect estimate of the state reported to it by the receiver 

Accordingly, we are faced with an imperfect state-information problem To 

resolve this problem, we follow [51] by introducing a new information state 

vector defined by 

Ik±(Zk,&k^), wi thl 0 = z0) A; = 1,2,. , (2 22) 

where 

Zfc = [zo,z1; ,zk] (2 23) 

e fc = [0o+,0i, ,0k] (2 24) 

Here the notion 90+ denotes the fact that the initial point of waveform parameter 

vector always comes after the initial point of observables 

From these three equations, we readily obtain the recursion 

Ik = (Ik-1:zk,9k^), fc = l,2, (2 25) 

which may be viewed as the state evolution of a new dynamic system with 

perfect-state information, and therefore applicable to dynamic optimization 

According to Eq (2 25), we may say 

- Ifc_j is the old value of the information state vector, 

- 6k~\ is the wavefoim parameter vector computed at time k — 1, and on 

which the transmitter acts at time k, this also implies the fact that 6k is 

unknown at time k, 
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— the current measurement z^ is viewed as a random disturbance resulting 

from the control decision 0k-i, and 

- note that the terminology adopted in Eq (2 25) is consistent with the 

system equation (2 4) 

At any discrete time k, the dynamic optimization algorithm seeks to find the best 

waveform parameters by minimizing a cost-to-go function, defined as the tracking 

expected mean-square error (MSE) 

9(x-k, #fc) = EX/t+1 z*-+i|I* 8k [(xfc+l ~ *fc+l|fc+l) (Xfc+l - Xfc+i|fc+i)] , (2 26) 

where x/c+ijfc+ Îfc, #fc,Xfc+1, zfc+1) is the posterior expected stake estimation given the 

selected parameter vector 9^ 

2.4.1 Directed-Information Flow 

Along with the distributed information in cognitive radar system, time also stamps 

itself in three components of the system, which are the target, the receiver and the 

transmitter This relationship is depicted by the diagram of radar pulse timing m 

Figure 2 3 If we backtrack to Section 2 2 where we have summarized three key roles 

that time plays in cognitive radar, an important physical observation about cognitive 

radar system emerges as follows 

The total time, namely cycle time rcycie needed for the directed-mformation to 

flow across the cognitive radar system is composed of three parts, expressed as 

^"cycle = = ^ target ~i~ ^receiver ' ^ t ransmit ter > \^ ^ ' ) 
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where 

1- t̂arget,: time for the radar signal to reach to the target and bounce back; 

2. TreceiVer: time for the radar echo to be processed in the receiver; and 

3- Ttransmitter: time for the transmitter to perform its action in the environment. 

Transmitted Pulse Pulse Width 

1 h 

Echo Pulse 

mm **vnmm*wv**MmHfimtm mm 

f receiver T ^ transmitter 

L cyde 
-Listening Time-

o^Dead 
Time 

-Pulse Repetition Time-

Figure 2.3: Diagram of radar pulse timing 

Referring also to Figure 2.3, a necessary property needs to be satisfied for a cog­

nitive radar system to work: 

Tcycie < Pulse Repetition Time. 

With this discussion of radar pulse relationship in mind, and to simplify the 

mathematical formulation throughout the thesis, we assume that the cycle time is 

considered only once as a delay during transition from one cycle to another. 
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Now, to elaborate more about the behaviour of the cognitive tracking radar sys­

tem, we may look to the directed-information flow across the system, depicted in 

Figure 2 4, where the information flow across the system is classified into two paths 

Filtering 
->* 

Propagation and 
signal processing 

l*i< 

1 k\k 

0^PPredlMH 
L * + l |* 

For unknown Qk, formulate 

cost-to-go function g(lk, Qk) 

Jk-i <—eM< Unit delay 
e,< 

argmin[Tr(/>+l|,+l)] 
i"*+i i*+i '"*/ 

Figure 2 4 Information flow in cognitive tracking radar 

Feedforward transmission path for joint control-estimation in the re­

ceiver In this path, the transmitter has already selected the waveform parameter 

vector Ok-i, on which radar waveform s^-i acts on the radar environment The re­

ceiver then builds on previous knowledge of the radar waveform and current observable 

zk available at time k to locally optimize the state estimation, obtaining {x^fc, Pfc|fc} 

A one-step prediction is performed to obtain {xfc+i|fc,Pfc+i|fc} by evolving x.k\k-i ar*d 

Pfc|/c_i one cycle ahead From CKF, it is easy to conclude that Pk+i\k is independent 

of the waveform parameter vector 0fc since 0k is unknown at this stage The pair 

{xfc+1|fc,Pfc+1|fc} is then fedback to the transmitter as a feedback-information metric 

Feedback transmission path for updating the waveform selection in the 

transmitter Given the feedback-information metric {xk+\\k, Pk+i\k} computed at 

time k and for any unknown waveform parameter 9k, the expected state-error covari-

ance Pfc+i|fc+1 can be calculated by evolving P ^ one cycle ahead The dependence 

of Pfc+i|fc+1 on Ok can be justified by first evolving Pzzk\k-i to Pzzk+i\k and then 
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substituting it into Pfe+1|fc+i Now, the requirement is to formulate a cost-to-go func­

tion based on the pair {Pk+\\k+i,Ok} a n d then find the policy /ife that selects Ok for 

the next signal transmission at time k + 1 To simplify the presentation, we will use 

Pfc+i|fc+i(0fc) to denote the dependence of the expected error covanance on unknown 

waveform parameter vector in the rest of the thesis 

Note that in Figure 2 4 we plot the signal-flow by looking one-step into the future 

As discussed in the perception-action cycle, the computation starts with the initial 

condition zo and proceeds by computing 9Q, which then leads to new observable zl5 

and so on The dynamic optimization algorithm is therefore expressed as 

91 = arg mm [Tr(Pfc+1[fc+1)] (2 28) 

where Vk is the waveform library at time k 

When there is provision of a horizon looking more steps into the future, we will 

have a general optimization problem It can be tackled by a dynamic programming 

approach derived in Appendix C 

2.4.2 Analysis and Synthesis of Waveform Library 

As described by Eq (2 28), dynamic optimization relies closely on waveform library 

in conducting the policy evolution By a similar argument, the waveform agility 

of cognitive radar will be greatly degraded if the waveform library is not efficiently 

designed In this thesis, we design the waveform library using a very straightforward 

strategy, including two steps 

Analysis To start the first step, the waveform parameter vector is divided into 

grid points The coordinates of each point on the grid correspond to one subset in 
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the space, which is spanned by the waveform parameter vector. Let us take the two-

dimensional waveform parameter vector 6 — [A, b] as an example, where A and b are 

chirp rate and pulse duration of the envelope, respectively. If each element of this 

vector has a maximum and a minimum determined by the transmitter, we then have 

a grid of waveform library as follows: 

V = {A E [Xmtn : AA : Am a x], b € [bmm : A6 : bmax}} , 

where AA and A6 denote the step-size of chirp rate and envelope duration, respec­

tively. 

To implement this step, the expected error covariance matrix Pfc+1|fc+1 is calculated 

with respect to each unknown Ok in the waveform library, expressed as 

P/c+i|/c+i = Pfc+i|fc — Gfc+iPZZifc+i|fcGfc+1, (2.29) 

for each subset 0k £ Vk, where the Kalman gain is 

Gfc+i = Pxz.fc+iifcP^fc+xifc (2.30) 

with 

Pxz,fc+i|/c = / x f c + ih (xfc+1)AA(xfe+1;xfc+i|fc,Pfc+1|fc)dxfc — xfc+i[fcZfc+1|fc, 
J«.Nr 

PZz,fc+i|fc = / h(xfc+i)h (xfc+i)7V(xfc+i;xfc+1|fc,P;t+1|fc)dxfc 

-Zfc+l|/cZfc+l|fc + R-fc+l(^fc)-

Synthesis: Having obtained the expected error covariance matrix Pfc+1|fc+1 for 
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every 8k in the waveform library, it is not difficult to calculate the cost pertaining 

to each grid point The task of this second step is to search over the waveform grid, 

in order to locate the grid point that produces a minimum of cost This method is 

called grid-searching When the radar waveform 6*k that can produce a minimal cost 

is discovered, it completes the synthesis of radar signal from the waveform library 

In what follows, we apply approximation to the cost function 

2.4.3 Approximat ion of the Cost Function g(-): 

Inclusion of the state Xfc+1 under the expectation defined in Eq (2 26) speaks for 

itself As for the observable z^+i, its inclusion under the expectation is justified on 

the following ground In CKF, the estimate *-k+i\k+i depends on z^+i, which itself 

depends nonhnearly on x^+i Consequently, it is difficult to evaluate this expectation 

We may therefore approximate the cost g(xk,9k) as shown by 

g{xk,ek) « Tr(Pfc+1|fc+1), (2 31) 

where Tr( ) is an operator that extracts the trace of the enclosed covanance Pk+i\k+i^ 

see Appendix D for detailed derivation of this approximate formula 

In words, the dynamic optimization algorithm encompasses the feedback trans­

mission path, extending from the cost-to-go function computed at the receiver output 

at the previous cycle to the waveform selection by the transmitter for the next cycle 

Most importantly, the whole computation is feasible in an on-line manner by virtue 

of setting the horizon depth L = 1 
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2.5 Summary 

This chapter presents the underlying theory of basic cognitive radar for tracking 

application The following ideas are exploited 

1 Use of the cubature Kalman filter in the receiver for perception of the radar 

environment, this new filter is the best known approximation to the optimal 

Bayesian filter under the Gaussian assumption, an assumption that is justified 

for tracking targets in space 

2 Formulation of the dynamic optimization algorithm for action to control the 

waveform selection in the transmitter This novel algorithm derives its information-

processing power m two important ways 

• First, it is based on the notion of imperfect-state information, which gets 

around the fact that our dynamic optimization algorithm requires perfect 

knowledge of the state, whereas in a real-world of environment the state is 

hidden from the radar 

• Second, clever use is made of the cubature rule of third degree in the 

approximation of certain integrals involved in deriving the dynamic opti­

mization algorithm 
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Chapter 3 

Cognitive Radar with Nested 

Memory 

Copper mirrors the clothes and hat; history mirrors the rise and fall of a 

nation; people mirrors the success and failure. 

Emperor Taizong of Tang Dynasty (599-649) 

So far, we have laid down the foundation of cognitive radar that is confined to the 

basic perception-action cycle. In this chapter, we will develop a new structure of cog­

nitive radar by introducing three other important processes into the basic perception-

action cycle, i.e., memory, attention, and intelligence. Before proceeding to do that, 

we need to remind ourselves two crucial aspects of a radar system: (i) the system 

aspects which describe the functional ingredients, and (ii) the algorithmic aspects 

which describe the algorithm design. In this chapter, we will first describe the system 

aspect followed by the algorithmic design. 
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3.1 Important Facts about Cortex and Mind 

As we stated in Chapter 2, the global feedback between the receiver and the transmit­

ter acts as the tunnel for information delivery in basic cognitive radar system It is fair 

to say that global feedback facilitates computational intelligence in the perception-

action cycle of cognitive radar Therefore, global feedback is necessary for a radar to 

be cognitive However, with global feedback alone, we are not anywhere close to the 

visual bram Reflecting on the perspectives on cognitive science in studying the brain 

cortex, we conclude that the basic cognitive radar discussed in Chapter 2 is merely a 

junior member of the cognitive radar family 

In order to develop a radar system with full cognition, four basic facts deserve 

attention 

• The first fact that has been overlooked is that the mammalian cortexes are 

layered networks and are organized m a hierarchical manner They have in­

put layers, output layers and hidden layers between them The three layers 

cooperatively accomplish the three basic functions of the bram convergence, 

divergence, and recurrence 

• The second fact is that information flows in the cortex are in two directions 

bottom-up, and top-down On the one hand, cognitive networks in the bram are 

auto-associated networks When new inputs are presented to the network, new 

associations are established by expanding pre-existing networks This procedure 

is called the bottom-up process It describes how information is stored in the 

memory On the other hand, to select the sensory stimuli and distinguish them 

from the outside world, the information will flow from the higher associative 
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cortex to the lower one This procedure is called the top-down control 

• The third fact is that all the five cognitive functions, 1 e , perception, attention, 

memory, intelligence and language 1, share the same biological architecture At 

different temporal and functional levels and also relying on the external stimuli, 

this architecture may exhibit different cognitive behaviour 

• The last fact, which is also the most important one, is that the mammalian 

cortex as it currently stands is the result of a continuing evolution process for 

millions of years [60] The cortex has become heavier and larger during this 

process and has reached its peak in complexity and ability in human being m 

an effort to enable cognition 2 

Having summarized the important facts that we can learn from the cortex, we now 

identify a new cognitive radar with more sophistication and information-processing 

power [61, 62], namely the nested cognitive radar The nested cognitive radar distin­

guishes itself from the basic cognitive radar m the "nesting" of three memories withm 

the perception-action cycle as depicted in Figure 3 1 The three memories are 

• perceptual memory in the leceiver, 

• executive memory in the transmitter, and 

• coordinating perception-action memory that reciprocally couples the first two 

memories 
1 Language will not be covered in this thesis considering its uniqueness to human cognition 
2To be more accurate, complexity contributes to the intelligence level more than the volume of 

the brain docs 
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The net result is improved information processing power over the basic cognitive 

radar by virtue of now having, in addition to the basic perception-action cycle, the 

following: memory, attention and enhanced intelligence . 

The nested cognitive radar is well-suited for monostatic radar, where the trans­

mitter and receiver are co-located. On the other hand, the basic cognitive radar, 

memoryless but equipped with global feedback, is perhaps more suitable for bistatic 

radar where the transmitter and receiver are separately located. 

Now, let us describe the first important ingredient in Figure 3.1, memory. 

Executive 
memory 

Environmental 
scene actuator 

Transmitter 

Coordinating perception-action memory 

Feedback-information metric 

Perceptual 
memory 

Environmental 
scene analyzer 

Actions Observables 

Receiver 

Figure 3.1: Nested perception-action cycle of cognitive radar 

3.2 Memory for Information Storage 

Before proceeding to discuss the important role of memory in cognitive radar, it is 

instructive that we make a distinction between knowledge and memory: 
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Definition 3.1 (Knowledge). Knowledge is a memory of certain facts and rela­

tionships that exist between them, none of which changes with time. • 

In other words, knowledge is static m its contents. 

Definition 3.2 (Memory). Memory is dynamic in that its contents continually 

change over the course of time in accordance with changes in the environment. • 

Stated in another way: The contents of the memory are subject to time con­

straints, whereas knowledge is timeless and therefore, free of time constraints. 

With a cognitive radar consisting of a transmitter and a receiver, it is logical to 

split the memory into two parts, one residing in the receiver and the other residing 

in the transmitter. These two parts of memory are respectively called perceptual 

memory and executive memory. 

3.2.1 Perceptual Memory 

As the name implies, perceptual memory is an integral part of how, in an overall 

sense, the receiver perceives the environment. To be more specific, perceptual memory 

provides the ability for the receiver to interpret the incoming stimuli so as to recognize 

their distinctive features and categorize the features accordingly. We may thus offer 

the following definition: 

Definition 3.3 (Perceptual Memory). Perceptual memory is the experiential 

knowledge that is gained by the receiver through a process of learning from the en­

vironment, such that the contents of the memory continually change with time in 

accordance with changes in the environment; the experiential knowledge so gained 

through learning becomes an inextricable part of the perceptual memory. • 
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To satisfy the cognitive functional mtegration-across-time property, we require 

that the perceptual memoiy be reciprocally coupled to the environmental scene ana-

lyzei This reciprocal coupling implies the use of two links 

• Feedforward link from a compartment within the environmental scene analyzer 

to the perceptual memory, which is intended to make it possible for the memory 

to update its contents in light of the new stimuli 

• Feedback hnk from the perceptual memory to the environmental scene analyzer, 

the purpose of which is to enable the analyzer to retrieve information stored 

in memory, the retrieved information is naturally relevant to the particular 

categorical interpretation of the environment that is the focus of the attentional 

mechanism 

In effect, the perceptual memory adds sophistication in the form of bottom-up and 

top-down learning to the perception-action cycle, making it much more powerful 

3.2.2 Executive Memory 

Just as perceptual memory relates to perception of the environment in the receiver, 

executive memory relates to the corresponding transmitter's action on the environ­

ment To be more precise, contents of the executive memory are acquired through 

the transmitter's actions m lesponse to information about the environment that is 

passed onto it by the receiver via feedback Hence, the need for the feedback link 

included m Figure 3 1, we may thus offer the following definition 

Definition 3.4 (Executive Memory). Executive memory is the experiential knowl­

edge gained by the transmitter through the lessons learned from the actions taken to 
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control the environment, with contents of the memory changing with time in accor­

dance with how the receiver perceives the environment; here again, the knowledge so 

gained through experience becomes an inextricable part of the executive memory. • 

Executive memory plays a key role of its own by making it possible for any new 

action taken by the transmitter on the environment to benefit from the experiential 

knowledge gained from previous actions. 

Here again, in order to satisfy the cognitive functional integration across-time 

property, the executive memory needs to be reciprocally coupled to the environmental 

scene actuator, as depicted in Figure 3.1. 

The need for this second reciprocal coupling in a cognitive radar is justified as 

follows: 

1. The forward link from the environmental scene actuator to the executive mem­

ory, which enables the memory to update its contents in light of new feedback 

information passed onto the actuator by the environmental scene analyzer. 

2. The feedback link from the executive memory to the environmental scene ac­

tuator, which enables the actuator to retrieve information stored in the mem­

ory, with the retrieved information being relevant to the particular category of 

decision-making that is the focus of attention. 

3.2.3 Coordinating Perception-Action Memory 

Thus far, we have justified the needs for perceptual memory in the receiver and 

executive memory m the transmitter. Naturally, we cannot expect these two memories 

to function independently from each other. To be more precise, these two memories 
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have to be also reciprocally coupled, as indicated in Figure 3.1. The transmitter 

and receiver of the cognitive radar are thereby enabled to operate in a synchronous 

(coherent) manner all the time that the system is in the operation mode. 

To be more precise, reciprocal coupling of the executive memory to the perceptual 

memory is required to address the issue of having to fully account for the cognitive 

functional integration across-time property. In so doing, the two memories are en­

abled to interact with each other so as to select the best action that can be taken 

by the transmitter to control the environment in light of the feedback information 

passed onto it by the receiver. As depicted in Figure 3.1, the cross-coupling between 

the perceptual memory and executive memory is made through the new memory: 

coordinating perception-action memory, whose function is to coordinate sensory per­

ception in the receiver with the corresponding action in the transmitter in an orderly 

and timely manner. 

Recognizing that the three memories, namely, perceptual memory, executive mem­

ory, and coordinating perception-action memory, are nested within the expanded 

perception-action cycle of Figure 3.1, this figure is referred to as the nested perception-

action cycle. Correspondingly, the second member of the family of cognitive radars 

based on Figure 3.1 is referred to as the nested cognitive radar. 

Next, we proceed to discuss another important ingredients of the nested cognitive 

radar, attention. 

3.3 Attention for Resource Allocation 

As a psychological term, attention was first defined in late nineteenth century by 

William James as follows [63]: 
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It (Attention) is the taking possession by the mind, in clear and vivid 

form, of one out of what seem several simultaneously possible objects or 

trains of thought. Focahzation, concentration, of consciousness are of its 

essence. It implies withdrawal from some things in order to deal effectively 

with others. 

For cognitive radars, the definition suggests the following facts: 

• Attention is distributed among all the components of cognitive radar. 

• Attentional control is the selective allocation of processing resources. To facil­

itate this function in cognitive radar, the perception and action mechanisms 

should have both excitatory and inhibitory components, which are elaborated 

in the following: 

- The excitation function operates on a singular neural network in the mem­

ory. Response of the activated neural network (referred to as working 

memory later in this section) to one incoming stimulus will be continu­

ously strengthened to another similar subsequent stimulus. This states 

the excitation-transfer theory [64], To ensure the excitation-transfer pro­

cess in cognitive radar, two conditions are necessary. First, the subsequent 

stimulus occurs before the complete decay of the excitation from the pre­

vious stimulus. Second, the neural network can not reach the excitatory 

threshold before it is exposed to the incoming stimulus. 

— The inhibition function operates on multiple neural networks in the mem­

ory. In completing a complex task, cognitive radar goes through a series 

of alternating states, such as, distraction, attention, and focus. When 
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one state dominates, other neural networks excluding the engaging neural 

network need to be inhibited from getting to the dominated state. 

These two components together guarantee a fundamental property of the atten-

tional control in cognitive radar: cooperative duality of excitation and inhibition 

[13]. 

As a matter of fact, this cooperative duality makes the two critical functions of 

attention possible: 

• enhanced activation of one functional network; and 

• suppression of other functional networks. 

1 ' 

Competitive Selection of 
Actuator Parameters 

£ 

i ' 
Resolution Control 

'xecutive 
attention 

Feedback Information 

Perceptual 
Attention Model-based 

Salience Filter 

Figure 3.2: Functional components of attention 

For nested cognitive radar, attention connects all the functional components in 

top-down and bottom-up manners, as shown in Figure 3.2. Following the insightful 
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model suggested by Knudsen in [65], we name the four key components contributing 

to the function of attention as working memory [66], resolution control, competitive 

selection of actuator parameters, and model-based salience filter of the environment, 

where the working memory links to the sensibility control in a top-down manner and 

the filter accesses the working memory in a bottom-up manner. It is noteworthy to 

point out that , similar to the classification of memory, there are two categories of 

attentions depicted in Figure 3.2, namely the perceptual attention and the executive 

attention. Collaborations between them play a key role in completing the overall 

function of attention in a cognitive radar system: 

• In one part of the cognitive radar system, in response to information gained 

from the environment, the resolution controller needs to retrieve the best system 

model from the working memory, specifically the active perceptual memory. The 

behaviour involved in this process is the core of perceptual attention. 

• In the other part of the system, when the information about the radar scene 

is fedback to the actuator, it prompts the resolution controller to retrieve the 

optimal waveform library from the working memory, specifically the active ex­

ecutive memory. What we stress here is that waveform library is dependant on 

working memory. The behaviour involved in the retrieval process is the core of 

executive attention. 

In a fundamental sense, the purpose of attention is to selectively allocate the 

available information-processing resources to realize the execution of a goal-directed 

action by the transmitter to control the environment in response to feedback infor­

mation about the environment extracted by the receiver. We may therefore thmk 

of attention as a mechanism for selective resource allocation, which, from a practical 
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perspective, makes a great deal of sense for the following reason: The computational 

(i.e., information-processing) resources of a cognitive radar are naturally limited. 

We may therefore offer the following definition: 

Definition 3.5 (Attention). Attention is a mechanism that protects both the perceptual-

processing power of the receiver and the decision-making power of the transmitter 

from the information-overload problem through selective allocation of computational 

resources. • 

In the context of a cognitive radar, the term "information overload" refers to the 

difficulty experienced by the system when the receiver's task of sensing the environ­

ment and the transmitter's task of decision-making are compromised by having to 

handle too much information. 

Before we introduce the two categories of attention, it is necessary to describe one 

component in Figure 3.2, working memory. 

3.3.1 Working Memory 

In cognitive psychology, working memory is referred to as the temporary memory 

of incoming stimuli in the process of executing cognitive operations [13]. Recalling 

the three aforementioned memories, working memory is not a new form of memory. 

Rather, it is a formation or selection of neural networks for the short term. Therefore, 

working memory is an active memory activated by the focus of attention in process of 

incoming stimuli analysis and prospective action selection. In other words, working 

memory plays the role of extracting contents from long-term memory and forming 

active neural networks with the purpose of guiding attentional control of the radar 

receiver and transmitter. Relating to the top-down attention, the working memory 
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can generally improve the quality of the information being processed via the resolution 

control, besides the functionality of information storage and manipulation 

With this discussion in mind, the working memory is defined as follows 

Definition 3.6 (Working Memory). Working memory is composed of the atten-

honal activation of neural resources of a large cognitive network of perceptual memory, 

executive memory, and coordinating perception-action memory • 

Here, we remind ourselves that a cognitive radar should be able to perform mul­

tiple functions under a variety of environmental conditions This requires that all 

three memory components, including perceptual memory, executive memory, and co­

ordinating perception-action memory, should consist of a bank of neural networks, 

each of which is trained under a different environmental configuration oriented at a 

specific task 

3.3.2 Perceptual Attention 

In the receiver, the above-described objective of protecting it from information-

overload is realized by having the environmental scene analyzer focus its attention 

on a particular category of features that best match the underlying attributes of the 

incoming stimuli This matching is achieved through bottom-up filtering of possible 

categories in the scene analyzer The matching through filtering, in turn, leads to 

top-down expectation performed by the perceptual memory The forward bottom-

up feature matching and category recognition followed by the top-down feedback is 

continual on a cyclic basis, leading to focused attention and further scene analysis 

In effect, what we are describing here is the circular manifestation of a localized 
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"perception-action cycle" within the receiver as depicted on the right-hand side of 

Figure 3.1. 

Moreover, referring to Figure 3.1, we see a link from the receiver to the transmitter, 

labeled the feedback-information metric. Basically, this metric serves the purpose of a 

cost-to-go function conditional on the measurements at the receiver input, and which 

is to be minimized by the transmitter. To further protect the cognitive radar from 

the information-overload problem, this metric should be formulated with the following 

objective in mind: 

Relevant information about the environment is preserved in the metric in 

the most effective way possible. 

This statement sums up the essence of the principle of information preservation. It is 

the design of this feedback link that reflects the intelligence level of a cognitive radar. 

We will further discuss this link in Section 3.4. 

3.3.3 Executive Attention 

The processing of actions in the transmitter requires the selective allocation of com­

putational resources, just as it is with perceptual processing in the receiver. In other 

words, just as there is perceptual attention, we also have executive attention. Ba­

sically, what we are saying here is that there is indeed another "perception-action 

cycle" localized within the transmitter, as depicted on the left-hand side of Figure 

3.1. 

To validate this latter statement, let us begin with feedback information about 

the environment sent to the environmental scene actuator by the environmental scene 

55 



www.manaraa.com

Ph.D. Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

analyzer at some point in time, in accordance with Figure 3.1. This feedback infor­

mation prompts the transmitter to act in the environment. That particular action is 

selected from a prescribed library of possible actions exemplified by linear-frequency 

modulated waveforms, for example, through the use of a dynamic optimization al­

gorithm or approximate dynamic programming, the purpose of which is to minimize 

the feedback-information metric in some statistical sense. In any event, the action 

so taken moves forward in a bottom-up manner, which, in turn, leads to a top-down 

expectation performed by the executive memory. This latter move results from match­

ing the action taken against the experiential knowledge on directed goals and possible 

consequences that reside in the executive memory. The continued circular bottom-up 

processing followed by top-down processing leads to the transmitter's own localized 

perception-action cycle. 

There are two localized perception-action cycles to account for, which result from 

the reciprocal coupling built in between the executive memory and perceptual mem­

ory, as depicted at the top of Figure 3.1. The purpose of this last pair of cross-

couplings, manifesting themselves through feedforward from the executive memory 

to the perceptual memory followed by feedback in the opposite direction, is to prompt 

these two memories to interact with each other so as to select the best action to control 

the environment. 

To sum up, we say that a cognitive radar is endowed with 

• first, attention in the executive domain, just like attention in the perceptual do­

main, is generated and guided through the selective allocation of computational 

resources available to the transmitter; 
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• second, cyclic interactions between the executive memory and perceptual mem­

ory lead to the coordination of sensory perception of the environment in the 

receiver with action taken on the environment in the transmitter in an orderly 

and timely manner, and 

• finally, feedback control, in both local and global forms, is responsible for 

self-organized realization of attentional mechanisms m a distributed manner 

throughout the system, yet, this realization is achieved without having a sep­

arate structure or group of structures dedicated exclusively to attention as a 

separate function within the radar system 

3.4 Intelligence for Information Synchronization 

Earlier in the chapter, we identified perception, memory, attention and intelligence 

as the four defining properties of cognitive radar Among these four properties, in­

telligence stands out as the most complex property and the hardest to define We 

say so because the other three properties, perception, memory and attention, in their 

own individual ways and varying degrees, make contributions to intelligence, hence 

the difficulty in defining it In the Penguin Dictionary of Psychology, Reber makes 

the following point on the lack of consensus, concerning the definition of intelligence 

[67] 

"Few concepts in psychology have received more devoted attention and few 

have resisted clarification so thoroughly " 

Indeed, there is no universal agreement upon the definition and theory of intelligence 

[68] It is easier to identify the existence of intelligence than to measure it In 
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dictionary, intelligence is defined as (1) the ability to learn new situation by proper 

behaviour adjustments; or (2) the ability to perceive the interrelationships of presented 

facts so as to guide action toward a desired goal [69], which states the complexity of 

intelligence. 

As a matter of fact, attempts of bringing artificial intelligence into radar systems 

have never stopped. One of the earliest work was due to Baldygo et. al. [70], where 

artificial intelligence was interpreted as the combined use of algorithms and heuristics. 

Different from the idea we have in this thesis, it will be more accurate to gather the 

early work on artificial intelligence under the umbrella of knowledge-based (KB) radar 

[71, 72]. 

Now we may go on to offer the following definition in the context of cognitive 

radar: 

Definition 3.7 (Intelligence). Intelligence is the ability of a cognitive radar to 

continually adjust itself through an adaptive process by responding to new changes in 

the environment and, thereby, create new forms of action and behaviour. • 

An important point to note in this statement is the following fact: 

Cognition implies adaptation to a nonstationary environment. 

To understand the essence of intelligence, we may look to the nested perception-action 

cycle of Figure 3.1, where we see that feedback control for interactions between the 

perceptual and executive parts of the system manifests itself both globally and locally. 

To this end, we may also go on to make the following statement [14] 

The abundant use of feedback distributed across the entire radar system is 

responsible for computational intelligence. 
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As it is with attention, this statement stresses the fact that there is no separate 

structure or group of structures dedicated to intelligence as a separate function within 

the radar system. 

3.4.1 Efficiency of Processing Information 

For intelligence to stand for the processing of cognitive information toward the achieve­

ment of behavioural goals, the degree of intelligence is indeed the efficiency with which 

that information is being processed [13]. The key question, however, is the following: 

How do we measure the efficiency of processing information? 

As noted earlier, the objective of a cognitive radar is to minimize the feedback-

information metric sent to the environmental scene actuator by the environmental 

scene analyzer in some statistical sense. On this basis, we may therefore respond to 

the question as follows: 

Through the use of dynamic optimization or approximate dynamic pro­

gramming, the cognitive radar becomes increasingly more intelligent as the 

feedback information metric is progressively minimized, cycle after cycle. 

In saying so however, we should not overlook the issue of overall computational 

complexity of the system, which, desirably, should be maintained at the minimum 

level possible. 
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3.4.2 Coordinated Cognitive Information Processing in a Self-

Organized Manner 

Looking at the nested perception-action cycle of Figure 3.1, we see that we have a 

sophisticated feedback control system with four visible local feedback loops positioned 

alongside two global feedback loops. As such, there is no external clock to coordinate 

the cognitive information processing performed by the radar system. Rather, the 

system coordinates itself in a self-organized and orderly manner in accordance with 

different facets of the cognitive functional integration across time property. The time 

needed for the completion of one cognitive information-processing cycle is determined 

by how long it takes for each one of all the feedback loops, local as well as global, to 

accomplish its own preassigned task. 

3.4.3 Feedback-Information Metric 

Keeping the above discussion in mind, we conclude that, for a cognitive radar equipped 

with memory and attention, intelligence is determined by the selection of (i) system 

structure, (n) filtering algorithm, (in) •performance measures used in the waveform 

design algorithm, and (iv) synchronization of all entries (i), (n) and (in). Consider­

ing that we have already designed the system structure and cubature Kalman filter 

is the best known filtering algorithm for our application, we conclude that at this 

stage the selection of performance measure is probably the most important aspect in 

designing the cognitive radar system. 

As we know, the general form of the waveform design can be expressed as the 
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following optimization problem 

mm objective function (3 1) 
ekevk 

subject to constraints (3 2) 

where Vk is the waveform library at time k 

In formulating the objective function of cognitive radar system, the selection of 

feedback-information metric appears as another important research topic that de­

serves some efforts Considering that the attention of this thesis has been focused on 

the fundamental theory and structural design (including the perception-action cycle, 

memory components, and attention), we only employ an objective function based on 

the mean-squared error (MSE) of the state [46] 

3.5 Practical Benefits of Abundant Use of Dis­

t r ibuted Feedback 

A distinctive feature of the nested cognitive radar, compared to its most basic coun­

terpart, is the abundant use of local as well as global feedback loops throughout the 

radar system The two global feedback loops include the environment On the other 

hand, the four visible local feedback loops in the system are reciprocal in nature but 

exclude the environment 

Most importantly, these feedback loops empower the nested cognitive radar with 

the following practical advantages over the basic cognitive radar 

1 The intelligence capability of the radar is significantly enhanced 
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Figure 3.3: Illustrating: (a) Selection of transmitted LFM waveform for use in the 
transmitter; (b) Selection of system-equation parameters for use in the receiver. 

2. The bottom-up and top-down linkages that reciprocally couple the receiver 

to the perceptual memory enable the receiver to select that particular set 

of system-equation parameters stored in the perceptual memory, which best 

matches the characterizing features of the current observables processed in the 

receiver; see Figure 3.3(b). 

3. The bottom-up and top-down linkages that reciprocally couple the transmit­

ter to the executive memory enable the transmitter to select that particular 

linear-frequency modulated (LFM) waveform stored in the executive memory, 

which optimally minimizes the feedback information metric passed onto this 

transmitter by the receiver; see Figure 3.3(a). 

4. Last but by no means least, thanks to the use of local feedback loops positioned 

alongside global feedback loops makes it possible for the coordinated fulfillment 

of the cognitive information processing being performed by the radar system in 

a self-organized and orderly manner in accordance with the different facets of 

the cognitive functional integration across time property of the radar. 

With system description of the nested cognitive radar just presented, we are now 
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ready to describe the algorithmic design of the system. 

3.6 Algorithmic Design of the Nested Cognitive 

Radar 

As an extension to basic cognitive radar described in Chapter 2, the nested cognitive 

radar also has both an environmental scene analyzer and an environment scene actu­

ator, algorithmically implemented by cubature Kalman filter (or continuous-discrete 

cubature Kalman filter) and dynamic optimization, respectively. Considering that 

the scene analyzer and actuator have been described in Chapter 2, rest of this section 

will be devoted to the algorithm design of other components. 

3.6.1 Design of the Memories 

As claimed earlier in this chapter, memories are the most essential components in 

the nested cognitive radar. The function of memory is to map the sets of input data 

onto a set of appropriate outputs. A neural network is generally considered as a 

straightforward structure to construct the memories in cognitive radar. This chapter 

looks to a popular neural network structure known as the multilayer perceptron (MLP) 

[73]. Figures 3.4 shows the demonstrative structure of an MLP with two hidden layers, 

where all the neurons include a nonlinear activation function that is differentiate. 

To generalize our description in the rest of this section, we assume the MLP is fully 

connected, which means each neuron in any layer is connected to all the neurons in 

the previous layer. 
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Figure 3.4: Demonstrative structure of an MLP with two hidden layers. 

Design of the Perceptual and Executive Memories 

In order to structurally design the perceptual and executive memories described earlier 

in Sections 3.2.1 and 3.2.3, we use the multilayer perceptron (MLP) network [73]. 

Referring to Figure 3.5(a), the design of perceptual memory proceeds as follows: 

• A multilayer perceptron (MLP) network with one hidden layer is constructed. 

Its input vector is the observables obtained in the receiver from the radar envi­

ronment and its output vector is the system-equation parameters. 

• The observables obtained in the receiver are first preprocessed and then, fed 

to the first hidden layer of the MLP. The preprocessing includes two steps: (i) 

mean removal, and (ii) covariance equalization. 

• Next, the features contained in the preprocessed observables are encoded layer-

by-layer into the perceptual memory. This step completes the bottom-up phase. 

• Relevant information stored in the perceptual memory on system-equation pa­

rameters is retrieved to provide the environmental scene analyzer with param­

eters that can best characterize the environment including the target. This 

finishes the top-down phase of the algorithmic design. 
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Figure 3.5' Design of the memories using MLPs. (a) Perceptual memory, (b) Execu­
tive memory. 

Similarly, the executive memory depicted m Figure 3.5(b) is designed as follows: 

• Another multilayer perceptron (MLP) with one hidden layer is constructed, 

with feedback-information metric obtained from the receiver as the input and 

the transmit linear-frequency modulated waveform as the output. 

• Before the feedback-information metric is fed to the input layer, it is also pre-

processed in the two-step way, i e , the removal of mean and equalization of 

covanance. 

• For the bottom-up phase, the preprocessed feedback-information metric ob­

tained from the receiver is fed to the input of the hidden layer of the executive 

memory. Again, the features extracted from the feedback-information metric 

are encoded in the executive memory in a layer-by-layer manner. 

• For the top-down phase, the LFM waveform stored in the executive memory is 
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retrieved to control the radar environment with an optimal action. 

Design of the Coordinating Perception-Action Memory 

As the name speaks for itself, the coordinating perception-action memory reciprocally 

couples the perceptual and executive memories. The structure of this memory should 

also reflect the reciprocal coupling. To coordinate the sensory perception in the 

receiver with the corresponding action in the transmitter, we design a third MLP 

network depicted in Figure 3.6 as follows: 

• The third multilayer perceptron network with one hidden layer is constructed. 

• The output of the hidden layer of the perceptual memory is connected to the 

input layer of the coordinating perception-action memory. 

• The output of the hidden layer of the executive memory is used as a teacher for 

the off-line training of the coordinating perception-action memory. 
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memorv action memor 

Output 
Layer 
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— —w 
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Output of 
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Figure 3.6: Design of the coordinating perception-action memory using MLP. 
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Back-Propagation Algorithm for Off-line Training 

The structural designs of three memories shown in Figures 3.5 and 3.6 highlight two 

basic signal flows in the MLPs, i.e., the function signals denoted by solid arrows, 

and the error signals denoted by dashed arrows. The function signals represent the 

stimuli that come into the input layer and propagate forward through the network. 

The error signals are calculated at the output layer of the network and propagate 

backward through the network. By making use of these two kinds of signals, we can 

obtain a supervised training algorithm to train the MLPs. This training algorithm is 

called the back-propagation algorithm [74, 75]. 

d,(n) 

O 

>0 >0 e,(n) 

Figure 3.7: Signal-flow graph of output neuron j . 

To derive the back-propagation algorithm, let us consider the signal-flow graph of 

output neuron j shown in Figure 3.7 (reproduced from [73]), where the error signal 

is calculated by 

e3{n) = d3(n) - y3(n) (3.3) 

with d^n) and y;(n) as the desired value and output value, respectively. Note that 

dj(n) is obtained from the training data and y7(n) is the output of the activation 
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y\(") 
bias bj(n) 

yJ."-) 
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y,(") 
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function of neuron j , given by 

2/, (n) = < £ » ) ) . (3.4) 

Here <^(-) is the activation function assumed to be nonlinear and u3(n) is the signal 

produced before input to the activation function, expressed as 

m 

1=0 

where w]%{n) is the synaptic weight from neuron i in previous layer to neuron j in 

current layer. 

If we follow a manner similar to the least-mean square algorithm, we may make 

corrections to the synaptic weights based on the minimization of the total instanta­

neous error energy of the whole MLP network, expressed as 

£{n) = \YJz»- (3-6) 
J 

Using the idea of gradient descent, the correction to the weight wJX{n), i.e., /\wn{n), 

is proportional to the partial derivative of £{n) with respect to wn{n), that is 

A ^ ( n ) = - T h ^ ^ r , (3.7) 
own[n) 

where 77 is the learning-rate parameter. Since the idea of gradient descent is to reduce 

the value of the energy, we include the minus sign in this regard. 
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To expand (3.7), we may apply the chain rule of calculus and yield 

d£{n) _ d£{n) de3{n) dy3{n) dv3{n) ,g g> 
dw3% (n) de3 (n) dy3 (n) dv3 (n) dwn (n) 

Substituting (3.6), (3.3), (3.5) into (3.8) yields 

^ L = -e,(n)^(I/J(n))yl(n). (3.9) 

From Eqs. (3.7) and (3.9), we calculate the weight correction as 

Aw3l(n) = r}e3(n)4i'(u](n))yl(n) (3.10) 
v v ' 

local gradient 

We now summarize the two phases of training the memories built on MLPs as 

follows: 

1. The feedforward phase is shown by solid arrows in Figures 3.5 and 3.6. At this 

stage, the weights of the network are fixed and the input signals are propagated 

through the network, layer by layer, until they reach the output. Thus, in this 

phase, changes are confined to the activation potentials and outputs of neurons 

in the network. 

2. The backward phase is shown by dashed arrows in Figures 3.5 and 3.6. In 

this phase, error signals are produced by comparing the outputs of the network 

with the desired responses, using Eq. (3.3) for all neurons. The resulting error 

signals are propagated through the network, again layer by layer. But this time, 

the propagation is performed in the backward direction. In this second phase, 
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successive adjustments are made to the weights of the network using Eq (3 10) 

Generalized Hebbian Algorithm for On-line Tuning 

The back-propagation algorithm discussed in the section above is a perfect candidate 

for off-line supervised training, which is also a necessary step for building existing 

knowledge into the memories However, for the nested cognitive radar, we also need 

an approach to absorb the new information obtained from the environmental scene 

analyzer into the perceptual and executive memories, when they are switched on­

line Unfortunately, neural networks trained using the back-propagation algorithm 

experience the following problems 

• First, we may only find local minima in the off-line training Therefore, an 

optimal solution is not guaranteed 

• Second, the back-propagation algorithm is generally slow and prohibitive for 

on-line training of a neural network with a large number of neurons 

• Last and most importantly, the on-lme training requires an unsupervised learn­

ing procedure m the nested cognitive radar system 

Hebb's learning is one famous theory of adjusting weights in a cost-effective man­

ner Hebbian theory was named in honour of Hebb, a famous neuropsychologist In 

his 1949's book The Organization of Behaviour A Neuropsychological Theory [76], 

he described a basic mechanism of adjusting the synaptic weights based on the presy­

naptic cell's repeated and persistent stimulation of the postsynaptic cell This basic 

principle can be expressed as wn(k) — xl(k)x:i(k), where wn(k) is the weight from 

neuron i to neuron j , xz(k) is the input for neuron i at discrete time k However, it 
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can be shown that Hebb's rule is unstable for any neuron model. Therefore, some 

other learning algorithm is needed. 

One of the most successful unsupervised learning algorithms is the generalized 

Hebbian algorithm proposed by Sanger [77]. For a feedforward neural network, the 

set of weights connecting m source nodes and I output nodes is denoted by {wJl(k)} 

with i = 1,2, ...,m and j — 1,2,...,/. The learning rule of GHA is a combination of 

Oja's rule and Gram-Schmidt process, given by 

Awn(k) = r/ lyjityxiik) - y3{k)^2wm(k)yn(k) j , (3.11) 

where r? is the learning rate parameter. Here the output y3{k) at time k is given as 

follows: 
m 

y3(k) = Y . w ^ x ^ > J = 1,2,...,/. (3.12) 
%=\ 

It is noteworthy that the most important parameter of the GHA is the learning 

parameter, which governs the learning speed of unsupervised learning. We have found 

that a reasonable value for the learning parameter is 10e-3. 

Recalling the four bands theory discussed in Chapter 1, we may say that the off­

line learning builds knowledge at the rational band and even social band. The on-line 

learning will operate at the biological band or cognitive band. These two facts mean 

that a successful on-line learning algorithm for memory building in the NCR should 

provide relatively mild tuning to the neural network. We have found that rj = le — 3 

is a reasonable learning parameter of GHA. 

With the designing procedures of three memories in mind, we now summarize 

the parameters used for each memory, shown in Table 3.1, where PM, EM, and CM 

71 



www.manaraa.com

Ph.D. Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

denote the perceptual memory, executive memory, and coordinating perception-action 

memory, respectively. 

Memory 

PM 

EM 

CM 

Input Layer 

20 

20 

10 

Hidden Layer 

10 

10 

4 

GHA 

le-3 

le-3 

le-3 

Epochs 

50 

50 

50 

Table 3.1: Parameters used in the memory design 

3.6.2 Design of Working Memory 

To design the working memory, it is necessary to revisit the three memories designed 

in Section 3.6.1. Therein, each memory component is implemented by an individual 

MLP network, considering that tracking radar is our main concern throughout the 

thesis. In other words, attention has already been focused on the tracking task. It is 

therefore valid to conclude, a working memory is the aggregation of the activated neu­

ral networks selected by attention. As a matter of fact, the selective neural processing 

performed by attention exactly reflects the existence of a working memory. 

However, to implement a cognitive radar system that is capable of multiple func­

tions under a diversity of environmental conditions, the three memory components 

should be expanded in the following way: 

• Expanding the Perceptual Memory: Referring to Figure 3.8, the percep­

tual memory is expanded using a bank of MLPs. The observables obtained in 

the receiver from the radar environment are connected to each MLP as an input 

vector. The output vector is the system-equation parameters. 
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Figure 3.8: Design of expanded perceptual memory using bank of MLPs 
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Figure 3.9: Design of expanded executive memory using bank of MLPs 

• Expanding the Executive Memory: Similarly, the executive memory is 

expanded using another bank of MLPs, depicted in Figure 3.9, with feedback-

information metric obtained from the receiver as the input and the transmit 

LFM waveform as the output. 
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Expanding the Coordinating Perception-Action Memory The third 

bank of MLPs is used to expand the coordinating perception-action memory, 

shown by Figure 3 10 Output of the hidden layer of each MLP in the expanded 

perceptual memory is connected to the input layer of each MLP in the expanded 

coordinating perception-action memory Output of the hidden layer of each 

MLP in the executive memory is used as a teaching to train the MLP networks 

in the expanded coordinating perception-action memory 

Output of 
hidden layer 
of executive 

memory 

KE> 
Output of 

coordinating 
perception-

action memory MLPU1 

i0-
Output 
Layer 

Hidden 
Layer 

Input 
Layer 

MLP #N3 

Output of 
hidden layer of 

perceptual 
memory 

Figure 3 10 Design of expanded coordinating perception-action memory using bank 
of MLPs 

As for the bottom-up attention, some emergent behaviours may have happened 

in the environment, l e , the appearance of a new target or sudden change of target 

dynamics, can prompt competition m the working memory and/or possibly influence 
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the composition of working memory. The issue of designing the bottom-up attention 

is now transposed into the on-line tuning of the selected MLP or switching to another 

MLP that can represent the environment more accurately. The on-line tuning can 

be accomplished using the generalized Hebbian algorithm described earlier in this 

Chapter. 

3.6.3 Design of the Feedback-Information Metric 

Take the continuous-discrete model described in Chapter 2 as an example and assume 

the CD-CKF is selected as the target tracking algorithm, if we are at time k, we may 

predict the measurement update at time k+1 before the real measurement is obtained, 

written as: 

1 In 

z/c+i|/c = 7T~ / ,^,fc+i|fc 
4 = 1 

2n 
I 

t = l 

1 2n 

w~ 2_^ Zi,k+i\kZi,k+i\k ~ Zfc+i|fcZfe+i|fc + Rfc+i(0fc). 

where Zhk+i\k is the i-th propagated cubature point originated from Xttk+i\k- The 

cubature point Xitk+i\k is calculated using the m-step time update of the predicted 

state xfc+1|fc. 

An advantage of both CKF and CD-CKF is that we can update the state-error 

covariance without knowledge of the real measurement. Indeed, by evolving P ^ one 

cycle ahead, we have the state-error covariance 

Pfc+i|fc+i — Pfc+i|fc — Gfc+iPZ Z i/c +i | /cG f e + 1 , 
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where the Kalman gain is 

Utilizing the Cramer-Rao lower bound we obtained in Chapter 2, it is not difficult 

to prove that the waveform selection algorithm boils down to an optimization problem 

of finding the minimum of the objective Tr(Pfc+1|fc+1) Since Pfe+1|fc+1 is a symmetric 

non-negative matrix, we express Tr(P/c+i|/c+1) as 

Tr(Pfc+1,fc+1) = J2X* ( 3 1 3 ) 

where Xl is the z-th eigenvalue of Pfc+1|fc+1 Therefore, we have the following opti­

mization problem 

mm Tr{Pfe+1|fe+1} (3 14) 

To emphasize the claims made earlier on, this measure assumes that the cross-

covanances of the states are negligible I e , the cross-covanance matrix is sparse with 

large values located at the diagonal entries 

3.7 Communications Among Subsystems of Cog­

nitive Radar with Nested Memory 

In an effort to understand how the components in a nested cognitive radar commu­

nicate among each other, we only need to describe one cycle of the nested cognitive 

radar The communication starts from the observable obtained from the environment 
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Step (1) Observable received by the receiver is sent to the perceptual memory to 

retrieve system model of the target 

Step (2) The retrieved system model is fedback to environmental scene analyzer 

to provide necessary information to the filtering algorithm Meanwhile, the in­

formation stored m the hidden layer of perceptual memory, namely Information 

A, is collected for future use in Step (6) 

Step (3) The feedback information calculated by the filtering algorithm in the 

receiver is transferred to radar transmitter 

Step (4) In response to the receiver, the feedback information is sent to the exec­

utive memory to retrieve waveform library that suits the environment Mean­

while, the information stored m the hidden layer of executive memory, namely 

Information B, is collected for future use in Step (6) 

Step (5) The environmental scene actuator selects the best waveform from the 

retrieved waveform library using the dynamic optimization algorithm 

Step (6) To start the coordinating phase, Information A collected in Step (2) 

is fed to the coordinating perception-action memory with the output as the 

integration of perception memory 

Step (7) Finally, Information B collected in Step (4) is fed to the coordinating 

perception-action memory in an response to the selected action 

To illustrate the communication mechanism embodied m Step (1) through Step 

(7), the reader is referred to Figure 3 11 
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Figure 3 11 Cyclic communication flow-graph of the nested cognitive radar 

To elaborate on the communications within the subsystems, we make the following 

comments 

• Communications between scene analyzer and perceptual memory Irrespective 

of the application of interest, a cognitive iadai's perception of the environment 

is continually influenced by the current data received by the system as well as 

cognitive information already stored in memory In other words, every percept 

(I e , snapshot of the perception process at some point in time) is made up of 

two components 

1 The first component pertains to recognition and therefore retrieval of rel­

evant information about the environment, which is stored m perceptual 
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memory for the purpose of representing past data 

2 The other component refers to categorization (classification) of a new set 

of data, which is correlated with the perceptual memory 

Processing of the first component is carried out in the perceptual memory, and 

that of the second component is carried out m the environmental scene analyzer 

Most importantly, in both cases, the processing is executed in a self-organized 

manner 

• Communications among scene analyzer, scene actuator, and executive memory 

Likewise, a cognitive radar's action onto the environment is continually influ­

enced by the feedback information passed to the transmitter by the receiver as 

well as the waveform library already stored in memory In other words, every 

execution (1 e , snapshot of the executive process at some point in time) is made 

up of two components 

1 The first component pertains to recognition of feedback information and 

therefore retrieval of relevant waveform library about the environment, 

which is stored m executive memory for the purpose of representing past 

feedback information 

2 The other component refers to categorization (classification) of a new set 

of data, which is correlated with the memory 

Processing of the first component is carried out in the executive memory, and 

that of the second component is carried out in the environmental scene actuator 

Most importantly, in both cases, the processing is executed in a self-organized 

manner 
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• communications among perceptual memory, executive memory, and coordinating 

perception-action memory A cognitive radar's perceptual memory and execu­

tive memory are continually organized by the coordinating perception-action 

memory In others words, the functional integration across time (1 e , coordina­

tion between perception at one point in time and action at next point in time) 

is made up two components 

1 The first component pertains to integration of perception of the environ­

ment and therefore coordination of the executive memory 

2 The other component refers to the tuning of the coordinating perception-

action memory via the executive memory backward m response to the 

selected action for next transmission 

Processing of the first component is carried out from the perceptual memory to 

the coordinating perception-action memory, and that of the second component 

is carried out from the executive memory to the coordinating perception-action 

memory 

3.8 Summary 

This chapter has expanded on what we already know about the basic cognitive radar 

discussed in Chapter 2 to encompass three more properties of human cognition 1) 

memory, 2) attention, 3) enhanced intelligence in addition to the perception-action 

cycle Specifically, the provision for memory includes the following essential elements 
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1 Perceptual memory, whose contents continually change with time in accordance 

with changes in the environment, the knowledge so gained becomes an inextri­

cable part of the perceptual memory 

2 Executive memory, the contents of which change with time in accordance with 

how the receiver perceives the environment, the knowledge so gained also be­

comes an inextricable part of the executive memory 

3 Coordinating perception-action memory, which involves reciprocal coupling of 

the perceptual memory and executive memory, with the result that the action 

taken on the environment by the transmitter and perception of the environment 

by the receiver are fully coordinated across time 

Unlike perception, action and memory, there are no specific locations for attention 

and intelligence Rather, both of these two properties are distributed across the whole 

radar system The net result of this distribution is two-fold 

1 Attention, which provides for the selective allocation of resources to the receiver 

and transmitter 

2 Intelligence, which is enhanced significantly by virtue of the fact that we now 

have two global feedback loops embodying the environment and four visible 

local feedback loops within the three memories 

The new radar structure is named nested cognitive radar Simply put, in an 

attempt to equip radar with full cognition inspired by the visual bram and as realistic 

as possible, this chapter lays down the groundwork for a new generation of radar 

systems 
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Chapter 4 

Simulation Evaluations 

No physician is really good before he has killed one or two patients. 

A Hindu proverb 

In the previous two chapters, we proposed a new generation of radar systems 

equipped with cognition. In this chapter, we consider three well-studied scenar­

ios: (a), linear target tracking; (b), falling object tracking in space; and (c), high-

dimensional target tracking of continuous-discrete model. The philosophy of employ­

ing these three scenarios relies on the characteristics of each simulation, summarized 

as follows: 

• To demonstrate the power of cognition in its basic form, there is possibly no 

simpler problem than a linear target tracking. The Kalman filter (KF) is the 

most straightforward state estimator in such an environmental configuration. 

Feature of the first simulation study is linearity. 

• Obviously, linearity represents only an extremely small portion of the tracking 

problem we may encounter. Nonlinear target tracking occupies a very important 
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position in the tracking literature because it is more practical for real applica­

tions Also, thanks to the recent development of cubature Kalman filter (CKF) 

described in Appendix A, we select another extensively studied problem in the 

tracking community, namely the reentry problem The distinguishing feature 

of the second simulation study is nonhneanty 

• Although nonhneanty can bring more practicality into our simulations, we ex­

pect to further challenge our cognitive radar system To do so, the third scenario 

considers a high-dimensional target tracking with continuous-discrete model 

Building on the the continuous-discrete cubature Kalman filter (CD-CKF) de­

scribed in Appendix B, the third scenario can be regarded as the most com­

plicated tracking problem to the best of our knowledge This problem features 

high-dimensionality and continuous-discrete model of cognitive radar system 

In deciding upon the scenarios used in this chapter, we find that there is a common 

feature shared by them All simulations study the tracking problem Without loss of 

practical considerations, tracking is obviously one important function that a cognitive 

radar system performs As such, it is equivalent to claim that attention has already 

been focused on a specific task, which also means it will be redundant to design a 

working memory that can switch between multiple neural networks 

In the discussion of feedback-information metric in Chapter 3, the mean-squared 

error (MSE) of the state was formulated as trace of the error covanance Although it 

is possible to design the feedback-information metric using other methods, our simu­

lation studies will be focused on the MSE-metnc in an effort to maintain conciseness 

of the thesis 
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4.1 Experimental Considerations 

In Chapter 2, the analysis and synthesis of waveform library have been discussed. 

To expand on that, we use the upsweep and downsweep linear frequency modulated 

(LFM) chirp of Gaussian amplitude modulation to conduct simulations in this chap­

ter. The parameters we can use to characterize this radar waveform are chirp rate 

b £ [bmin,bmax] and pulse duration of the envelope A € [Xmm,Xmax\. Therefore, we 

have a two-dimensional waveform parameter vector 6 = [X,b], based on which the 

grid can be expressed as: 

V = {A € [Xmni '• AA : Xmax], b £ [—bmax : A6 : —bmin] U [bmvn : A6 : 6maT]} , 

where AA and A6 denote the step-size of chirp rate and envelope duration, respec­

tively. 

All the computer experiments are conducted for three kinds of radar systems, 

the conventional radar system with fixed-waveform (FWF), the basic cognitive radar 

(BCR) developed in Chapter 2, and the nested cognitive radar (NCR) developed in 

Chapter 3. The testbed was developed using Matlab [78]. Throughout the chapter, 

we will use the ensemble-averaged root mean-squared error (EA-RMSE) as the metric 

to evaluate BCR and NCR, compared to FWF. The EA-RMSE is defined as 

EA-RMSEp(/fc) 

N 
N 

N 
1 
v E (CPU - Kk)2 + (ph - pik)2 + iph - Pik)2). 

n=\ 

where [p™fc, p^k, p^k] and [p"fc,P2,fciP3,fc] a r e the coordinates of the true and estimated 

positions at time index k in the n-th Monte Carlo run. The simulation is run for N 
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Monte Carlo runs in total. In a similar manner, we may also define the EA-RMSE 

for the velocity as follows: 

EA-RMSE„(fc) 
\ 

1 
TF E (K* - Kk? + K* - Kk)2 + K* - i$k)2)> 

n = l 

where ^ " / C ^ / C ^ . A : ]
 a n ^ [̂ "/c 2̂,fc>̂ 3,fc] a r e t n e true and estimated velocity compo­

nents at time index k. 

All the simulations are run on an Intel dual-core computer with 2.4 GHz processor. 

Every simulation is conducted for 50 Monte-Carlo runs. The physical memory of the 

computer is 3.0 GB. 

4.2 Scenario A: Linear Target Tracking 

In this first scenario, the linear target tracking problem is considered. An aircraft is 

assumed to move linearly in space. Unpredictable perturbations in the trajectory are 

modeled as additive white Gaussian noise processes. The purpose of using this model 

is to demonstrate the power of cognitive radar in a simple way. 

4.2.1 State-Space Model 

Let us define x = [p, p]T as the state of the target, where p and p denote the range 

and range-rate, respectively. We have the system equation as follows: 

Xfc = F^X/e-i + vfc, (4.1) 
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where Ffc is the state transition matrix and vfc is assumed to be white Gaussian 

system noise with covanance E{vfcv^} = Qk 

The radar observations are delay and Doppler frequency, 1 e r and /# , respec­

tively The Doppler frequency }'D represents a shift in the carrier frequency fc, this 

value is positive when the target is moving toward the radar, and negative when 

the target is moving away from the radar The delay and Doppler frequency can be 

converted to range and range-rate using p — r x c/2 and p = fo x c/(2/c), where c 

is the speed of wave propagation and fc is the carrier frequency The measurement 

equation is given by 

zfc = HfcXfc + wfc(0fc_!), (4 2) 

where H^ is the observation matrix that maps the true state space into the mea­

surement space, w/c(0/c_i) is the measurement noise with zero-mean and covanance 

E{w/c(0fc_1)w/c(0fc_1)
T} = R./C(0fc_1), which shows dependency of the measurement 

noise on radar waveform 0k-\ 

4.2.2 Experimental Configurations 

Suppose an L-band radar of 2 GHz is employed The radar is mounted at a height 

of 100 meters Because the transmitter and the receiver are co-located, the received 

signal energy depends inversely on the fourth power of the target range p For this 

reason, the returned pulse SNR, rjp, m Eq (2 18) for the target observed at range p 

was modeled according to 

* = (P) ' 
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where p denotes the range at which 0 dB SNR was obtained In our experiment, the 0 

dB SNR ratio is defined at 20 km The radar transmitter is assumed to be equipped 

with a library of upsweep and down-sweep linear frequency modulated (LFM) wave­

forms of Gaussian amplitude modulation, defined on a discrete two-dimensional grid 

over parameter space 

P = {AG [10e-6,100e-6], b 6 [-100e9, -10e9] U [10e9,100e9]} (4 3) 

with grid step-sizes AA = 10e-6 and Ab = 10e9 A target moves away from the radar 

from range pQ = 3 km at a speed of p0 = 200 m/s 

The state transition matrix and measurement matrix are respectively defined as 

and 

H 

1 T 

0 1 

1 0 

0 1 

where T is the sampling duration, taken as 2 5 ms 

The system noise covanance is modeled as 

(4 4) 

(4 5) 

Q = ^ 
T4 /4 T3 /2 

T3 /2 T2 

(4 6) 

where a\ is the variance of piecewise constant white system noise [79] 
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Since we now have a linear filtering problem, the Kalman filter is employed in 

the receiver for state estimation of the target and grid-searching is used in the trans­

mitter for action to control the environment The filter is initialized with a state of 

large covariance [100,1]T Monte Carlo simulations are conducted to evaluate the 

performance of the nested cognitive radar versus the conventional radar with fixed 

waveform To evaluate the validity of using memory, we also compare the performance 

of two members of the cognitive radar family, basic cognitive radar (BCR) and nested 

cognitive radar (NCR) equipped with perceptual memory, executive memory and co­

ordinating perception-action memory 

4.2.3 Simulation Results 

The root mean-squared error (RMSE) simulation results are shown in Figures 4 1 

and 4 2, where the conventional radar equipped with fixed-waveform (FWF), basic 

cognitive radar (BCR), and the nested cognitive radar (NCR) are depicted m dotted, 

dashed, and solid lines, respectively Table 4 1 lists the ensemble-averaged RMSE 

(EA-RMSE) for FWF, BCR and NCR 

EA-RMSE 

FWF 

BCR 

NCR 

Range (meters) 

0 3422 

0 1256 

0 0477 

Range-rate (meters/second) 

0 5231 

0 2723 

0 0415 

Table 4 1 Ensemble-averaged RMSE for FWF, BCR and NCR Scenario A 

Examining the simulation results of Figures 4 1 and 4 2, we see that an outstand­

ing enhancement of the radar resolution for target tracking can be obtained using this 

new radar structure, compared with the basic cognitive radar that is confined to the 
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perception-action cycle, and even more so when memory is built into the cognitive 

radar system. 

Next, to study how the cognition process evolves across time for both BCR and 

NCR, we have plotted the waveform selection for both the chirp rate and the duration 

of pulse envelope in Figure 4.3. We observe that the transition of the chirp rate is 

switched from maximum up-sweep to maximum down-sweep for the BCR, while the 

chirp rate quickly dwelled at the maximum up-sweep for the NCR. This explains the 

better performance of NCR over BCR. Both of the basic and nested cognitive radars 

will select the maximum duration of the pulse envelope starting from the beginning 

of the cognition process. 

In investigating the reason for the enhancement of performance using cognitive 

radar, we notice an interesting phenomenon: the observables obtained by the receivers 

of cognitive radars have magnitudes higher than the conventional radar. We name this 

phenomenon the chattering effect. The chattering effects of range and range-rate are 

depicted in Figures 4.4 and 4.5, where Figures 4.4(a) and 4.5(a), Figures 4.4(b) and 

4.5(b), and Figures 4.4(c) and 4.5(c) correspond to FWF, BCR and NCR, respectively. 

The superb performance of our cognitive radar has proved that chattering effect plays 

a positive role in increasing the resolution of a radar system. This effect will be studied 

in greater detail in Chapter 5. 
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Figure 4 1 RMSE of target range (Scenario A) (l) conventional radar equipped with 
fixed waveform (dotted line), (n) basic cognitive iadar (dashed line), and (m) nested 
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Figure 4 2 RMSE of target range-rate (Scenario A) (I) conventional radar equipped 
with fixed waveform (dotted line), (n) basic cognitive radar (dashed line), and (m) 
nested cognitive radar (solid line) 
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(b) 

(d) 

Figure 4.3: Waveform selection across time (Scenario A), (a) chirp rate for BCR, (b) 
chirp rate for NCR, (c) length of pulse envelope for BCR, (d) length of pulse envelope 
for NCR. 
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Figure 4.5: Chattering of range-rate (Scenario A) (a) FWF, (b) BCR, (c) NCR. 
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4.3 Scenario B: Tracking a Falling Object in Space 

In this second scenario, we consider an extensively studied problem in the tracking 

community, that is, the reentry problem [80]. A ballistic target reenters the Earth's 

atmosphere after having travelled a long distance, its speed is high and the remaining 

time to ground impact is relatively short. The purpose of this scenario is to illustrate 

two features of our cognitive radars: (i) the enhancement of radar performance for 

mildly nonlinear target tracking, and (ii) the increased speed of reaction with the 

existence of cognition. 

4.3.1 Problem Formulation 

Geometry of the falling object is depicted in Figure 4.6. In the reentry phase, two 

types of forces are in effect: The most dominant is drag, which is a function of speed 

and has a substantial nonlinear variation in altitude; the second force is due to gravity, 

which accelerates the target toward the center of the earth. This tracking problem is 

highly difficult because the target's dynamics change rapidly. Under the influence of 

drag and gravity acting on the target, the following differential equation governs its 

motion [80]: 

Xi 

x\ 

94 

-x2 

-j{x{).g.x\ 
2x, +9 

drag 
= 0, 

(4.7) 
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Falling object 

O n -

Earth Ground 

Figure 4.6: Geometry of the falling object scenario. 

where x\, x2 and x3 are the altitude, velocity, and ballistic coefficient that depends 

on the target's mass, shape, cross-sectional area, and air density, respectively. The 

term £(xj) is the air density and is modeled as an exponentially decaying function of 

xi, given by 

£(x,) = £oexp(-7X!), 

with the proportionality constant £o — 1-754, 7 = 1.49e-4, and the gravity g = 

9.8 ms"2. 

To convert Eq. (4.7) to the state space, we define the state x = [xi x2 x3]T. The 
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system equation at continuous time t can now be expressed by 

x t = g(x tj , 

Using the Euler approximation with a small integration step 5, we write 

xfc = xfc_i + 6g(xk-.i) 

= f(Xfc-l) (4 

In order to account for imperfections in the system model (eg, lift force, small vari­

ations in the ballistic coefficient, and spinning motion), we add zero-mean Gaussian 

system noise, thus obtaining the new system equation as it is in Eq (2 4) 

xfc = f(xfc_i) + vfc, (4 9) 

where we have 

f(xfc_1) = $x f c_ 1-G[ JD(x f c_ 1)-g] (4 10) 

with matrices 

$ 

G 

1 -5 0 

0 1 0 

0 0 1 

[0 8 0]T 
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and drag 

£>(xfc) = 
t{xlk)gx2

2l 

2X; 3 k 

We assume that the system noise vfc is zero-mean Gaussian with covanance matrix 

Q = ? i f qiS 0 

0 0 q25 

The parameters q\ and g2 control the amount of system noise in target dynamics 

and ballistic coefficient, respectively For our simulation, we consider that q\ = 0 01, 

qi = 0 01 and 6 = 01 second 

4.3.2 Radar Configurations 

We use LFM of Gaussian amplitude modulation with both up-sweep and down-sweep 

chirps, which composes the waveform library defined by 

V = {\£ [10e-6,300e-6],6 e [-300e9, -10e9] U [10e9,300e9]} (4 11) 

with grid step-size AA = 10e-6 and Ab = 10e9 The bandwidth is set to be 5 MHz 

The 0 dB SNR was set to 80 km An X-band radar fixed at (0, 0) operates at a 

fixed carrier frequency of 10 4 GHz for a speed of electromagnetic-wave propagation 

c = 3e8 m/s in space The fixed-waveform radai is equipped with down-sweep chirp 

rate and a pulse duration of A = 20 /LIS The sampling rate is set to Ts = 100 ms The 
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radar is located at height if = 30 m with horizontal distance to the track M = 30 

km. The measurements at discrete time k include the range p and the range-rate p, 

given by 

Pk = \lM2 + (xltk - H)2 + whk 

Pk 
VM2 + (xlifc - Hf 

+ W2,k 

where the measurement noise is wfe ~ 7V(0,Rfc). 

Now that we have a discrete-time nonlinear filtering problem, the CKF is employed 

in the receiver for state estimation of the target. A detailed description of the CKF 

can be found in Appendix A. The true initial state of the target is defined as 

x0 

1 T 

61 km, 3048 m/s, 19161 

The initial state estimate and its covariance are assumed to be 

X0|0 

Po|o 

61.5 km, 3000 m/s, 19100 

diag le6, le4, le4 

respectively. 

4.3.3 Simulation Results 

Here, we show the simulation results for a radar with fixed waveform (FWF) and 

two cognitive radars, the basic cognitive radar (BCR) and nested cognitive radar 

98 



www.manaraa.com

Ph D Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

(NCR) Most of these results were first reported m [81] Considering the curse-

of-dimensionahty problem that may arise from dynamic programming with a large 

horizon-length, we study two cases of dynamic programming 

• L = 1 a special case of dynamic programming, namely dynamic optimization, 

and 

• L = 2 an example of dynamic programming, described in Appendix C 

To validate the performance of cognitive radars for the special case, l e L = 1, 

Figures 4 7, 4 8, and 4 9 respectively plot the root mean-squared error (RMSE) for 

the following three elements of the target's state altitude, velocity, and ballistic 

coefficient, all three of which occupy the same time scale Table 4 2 lists the ensemble-

averaged RMSE (EA-RMSE) for FWF, BCR and NCR 

EA-RMSE 

FWF 

BCR 

NCR 

Altitude (meters) 

24 9421 

2 4672 

0 8799 

Velocity (meters/second) 

16 4797 

13322 

0 6448 

Ballistic coefficient 

60 9974 

60 9955 

61 0330 

Table 4 2 Ensemble-averaged RMSE for FWF, BCR and NCR Scenario B 

Similar to the first scenario, we have also plotted the waveform selection for both 

the chirp rate and duration of the pulse envelope in order to illustrate how the cogni­

tion process evolves across time in the cognitive radai, as shown by Figure 4 10 The 

transitions of waveform parameters across time appear to explain how the cognition 

performs in the cognitive radar, where the chirp rate of BCR switches more frequently 

than that of the NCR The enhanced performance of the nested cognitive radar over 

its basic counterpart is possibly due to this behaviour 
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Interestingly enough, the chattering effects are also observed in this scenario, 

which are plotted in Figure 4 11 for range and Figure 4 12 for range-rate Figures 

4 11(a) and 4 12(a), Figures 4 11(b) and 4 12(b), and Figures 4 11(c) and 4 12(c) 

correspond to FWF, BCR, and NCR, respectively Specifically in Figure 4 12(c), a 

periodical chattering effect is observed at the initial stage This is an interesting 

phenomenon that deserves some studies as a future research topic 

Examination of the RMSE results plotted in Figures 4 7 through 4 9, as well as 

the EA-RMSE results listed in Table 4 2, leads us to make the following important 

observations 

1 Figures 4 7 and 4 8 reveal that the basic cognitive radar outperforms the con-

vectional radar with fixed transmit-waveform by an order of magnitude, and the 

nested cognitive radar even enhances the performance of its basic counterpart 

significantly 

2 In direct contrast to Figures 4 7 and 4 8, the RMSE plots presented m Figure 

4 9 appear to reveal that insofar as the ballistic coefficient is concerned, the 

use of basic cognition with dynamic optimization does not improve estimation 

accuracy of the ballistic coefficient over the course of time A higher fluctuation 

of the ballistic coefficient is even observed for the nested cognitive radar The 

only explanation that we can offer here for the difference between Figures 4 7 

and 4 8 on the one hand and Figure 4 9 on the other, is that the measurements 

are only limited to the range and range-rate There, the estimated state of the 

ballistic coefficient is not directly affected by the measurements at hand 

For a good understanding of the dynamic programming algorithm with respect to 

different length of horizon, we also supply simulation results for L = 2, m comparison 
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to L = 1 The purpose of this simulation is to study if the performance of cognitive 

radar can be improved by increasing the length of horizon m dynamic programming 

To make our demonstration illustrative, we use the same experimental configurations 

as before and select only the basic cognitive radar for comparison Figures 4 13, 4 14, 

and 4 15 respectively plot the RMSE for the altitude, velocity and ballistic coefficient 

of the target To see how the cognition has behaved in a cognitive radar, the waveform 

transition for both the chirp radar and length of pulse envelope is presented in Figure 

4 16 The EA-RMSE for FWF and BCR (L = 1, 2) is summarized in Table 4 3 

EA-RMSE 

FWF 

BCR(L = 1) 

BCR(L = 2) 

Altitude (meters) 

24 7592 

6 1916 

2 5512 

Velocity (meters/second) 

22 3393 

1 8249 

14505 

Ballistic coefficient 

60 9892 

60 9713 

60 9672 

Table 4 3 Ensemble-averaged RMSE for FWF and BCR (L = 1, 2) Scenario B 

The RMSE curves plotted m Figures 4 13 through 4 15 and the EA-RMSE values 

shown in Table 4 3 demonstrate the following important observations 

1 Figures 4 13 and 4 14 confirm that dynamic programming with a larger horizon-

depth L = 2 performs better than dynamic programming with only one step of 

horizon length, I e dynamic optimization 

2 From Figure 4 15 we see that the ballistic coefficient exhibits a random fluctu­

ation for dynamic programming with both L = 1 and L = 2 The reason for 

this is obvious the measurements obtained by the receiver are unable to reflect 

any information about the ballistic coefficient 
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Figure 4.7: RMSE of target altitude 
(Scenario B). (i) conventional radar 
equipped with fixed waveform (dotted 
line), (ii) basic cognitive radar (dashed 
line), and (iii) nested cognitive radar 
(solid line). 
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Figure 4.8: RMSE of target velocity (Sce­
nario B). (i) conventional radar equipped 
with fixed waveform (dotted line), (ii) ba­
sic cognitive radar (dashed line), and (iii) 
nested cognitive radar (solid line). 
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Figure 4.9: RMSE of ballistic coefficient (Scenario B). (i) conventional radar equipped 
with fixed waveform (dotted line), (ii) basic cognitive radar (dashed line), and (iii) 
nested cognitive radar (solid line). 
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Figure 4.10: Waveform selection across time (Scenario B). (a) chirp rate for BCR, (b) 
chirp rate for NCR, (c) length of pulse envelope for BCR, (d) length of pulse envelope 
for NCR. 
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Figure 4.11: Chattering of range (Scenario B). (a) FWF, (b) BCR, (c) NCR. 
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Figure 4.13: RMSE of target alti­
tude (Scenario B). (i) conventional radar 
equipped with fixed waveform (dotted 
line), (ii) basic cognitive radar with L = 
1 (dashed line), and (iii) basic cognitive 
radar with L = 2 (solid line). 
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Figure 4.14: RMSE of target veloc­
ity (Scenario B). (i) conventional radar 
equipped with fixed waveform (dotted 
line), (ii) basic cognitive radar with L = 
1 (dashed line), and (iii) basic cognitive 
radar with L — 2 (solid line). 
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Figure 4.15. RMSE of ballistic coefficient (Scenario B). (I) conventional radar 
equipped with fixed waveform (dotted line), (ii) basic cognitive radar with L = 1 
(dashed line), and (iii) basic cognitive radar with L = 2 (solid line). 
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Figure 4 16 Waveform selection across time (Scenario B) (a) chirp rate for BCR 
with L = 1, (b) chirp rate for BCR with L = 2, (c) length of pulse envelope for BCR 
with L = 1, (d) length of pulse envelope for BCR with L = 2 
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4.4 Scenario C: Target Tracking of High-Dimensional 

Continuous-Discrete Model 

In this last case study, we consider a complicated scenario, the air-traffic-control prob­

lem, the objective of which is to track the trajectory of an aircraft that executes a 

maneuver at (nearly) constant speed and turn rate m the horizontal plane We are 

interested in this problem because (1) air traffic control is important for both mili­

tary and civilian applications, (n) cognitive radar performs well for tracking problem 

with continuous system equation and discrete measurement equation, and (in) most 

importantly the high-dimensional tracking problem will strongly confirm the need of 

cognition in tackling difficult target tracking problem 

4.4.1 State-Space Model 

In the aviation language, this problem is commonly referred to as tracking of a target 

with (nearly) coordinated turn [79, 82] In this scenario, the motion in the horizontal 

plane and the motion in the vertical plane are assumed to be decoupled Hence, we 

can write the coordinated turn in the three-dimensional space, subject to fairly small 

noise modeled by independent Browman motions, as shown by Eq (2 7), where the 

seven-dimensional state of the aircraft x = [e e r\ r\ £ £ u>]T with e, 77 and ( denoting 

positions and e,n and ( denoting velocities m the x,y and z Cartesian coordinates, 

respectively, u denotes the turn rate, the drift function 

f(x) = -UJT), rj, tot, (, 0, 0 
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the noise term j3(t) = [^(t), /32(t), , /37(t)]
T with /?,(£),z = 1,2 7, being all 

mutually independent standard Brownian motions, which account for unpredictable 

modeling errors, and finally the diffusion matrix is 

Q = diag([0, a2
u 0, a?, 0, a*, a\}) 

For the problem at hand, the radar is located at the origin and equipped to 

measure the range, p, and azimuthal angle, 9, with a measurement sampling time T 

Hence, we write the measurement equation 

pk V4 + rj'i + a 

tan- g 
+ wfc, 

where the measurement noise is Gaussian wfc ~ jV(0,Rfc) with Rfc = d\a,g([a^,ag}) 

To simulate the target trajectory, we use o\ = \/0~5, 02 = \/5e-7, ap = 50 m, 

OQ = 0 001 deg, and the initial state is 

x0 = [10 km, 100 m/s, 10 km, 150 m/s, 5 km, 0 ms"1, 20 deg/s]T 

With these parameters, the ideal trajectoiy of the target is plotted m Figure 4 17 

We use the notation x^ to denote x(t) at time t = tk + ]5, where 1 < j < m and 

5 = T/m Applying the Ito-Taylor expansion of order 1 5 to Eq (2 7), we get the 

stochastic difference equation 

x 
0+i) fd(4) + VQ" + (Lf (xD)V' (4 12) 
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where 

and 

fc(x) 

e + 8e - 52uf]/2 

e-Sufj- 82u2e/2 

rj + 5f} + 52ue/2 

i] + Sue - 52to2fj/2 
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To generate independent trajectories, we use m = 1000 time-steps/sampling interval. 
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Figure 4.17: High-dimensional target trajectory of continuous-discrete model. 

4.4.2 Radar Configurations 

The experimental results presented in this section are based on simulating X-band 

radar with carrier frequency fc = 10.4 GHz. We use LFM with both up-sweep and 

down-sweep chirps, which composes the waveform library given as follows: 

P = {\e [10e-6,100e-6],6e [-100e9, -10e9] U [10e9,100e9]} (4.13) 

with grid step-sizes AA = 10e-6 and A6 = 10e9. The pulse is assumed to be Gaussian 

amplitude-modulated. The sampling frequency is set to fa = 400 Hz and the update 

frequency of the cognitive algorithm is set to 20 Hz. 

Now we have a continuous-discrete nonlinear filtering problem, the CD-CKF is 

selected in the receiver for perception of the environment. A detailed description of 

the CD-CKF can be found in Appendix B. 
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4.4.3 Simulation Results 

We compare the performance of conventional radar with fixed waveform (FWF) to 

BCR and NCR by plotting the RMSE of the range and range-rate across the entire 

simulation duration in Figures 4.18 and 4.19, respectively. Here, to initialize the track, 

we can either use the single-point method (SP) [83] and the two-point differencing 

(TPD) method [79]. The SP method initializes the track by setting the position equal 

to the first measurement and the velocity as zero. The TPD method uses the first two 

measurements to estimate the states' statistics. For a comparison of the two methods, 

the reader may refer to [84]. In our simulation, we have adopted the TPD method 

for initialization. The EA-RMSE is also summarized in Table 4.4 for FWF, BCR and 

NCR. From Figures 4.18 and 4.19 and Table 4.4, a surprisingly good performance 

is obtained using cognitive radar, for either the basic version or the nested version. 

Furthermore, the nested cognitive radar even outperforms its basic counterpart. 

The waveform selection procedure is depicted in Figure 4.20. Similar to Scenario 

B, the waveform transition is also observed for both the BCR and NCR. The chatter­

ing effects for range and range-rate are also plotted in Figures 4.21 and 4.22, where 

Figures 4.21(a) and 4.22(a), Figures 4.21(b) and 4.22(b), and Figures 4.21(c) and 

4.22(c) correspond to FWF, BCR, and NCR, respectively. 

EA-RMSE 

FWF 

BCR 

NCR 

Range (meters) 

10.4195 

0.3725 

0.3122 

Range-rate (meters/second) 

12.0065 

2.9588 

1.8696 

Table 4.4: Ensemble-averaged RMSE for FWF, BCR and NCR: Scenario C 
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Figure 4.18: RMSE of target range (Scenario C). (i) conventional radar equipped 
with fixed waveform (dotted line), (ii) basic cognitive radar (dashed line), and (iii) 
nested cognitive radar (solid line). 
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Figure 4.19: RMSE of target range-rate (Scenario C). (i) conventional radar equipped 
with fixed waveform (dotted line), (ii) basic cognitive radar (dashed line), and (iii) 
nested cognitive radar (solid line). 
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Figure 4.20: Waveform selection across time (Scenario C). (a) chirp rate for BCR, (b) 
chirp rate for NCR, (c) length of pulse envelope for BCR, (d) length of pulse envelope 
for NCR. 
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Figure 4.21: Chattering of range (Scenario C). (a) FWF, (b) BCR, (c) NCR. 
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Figure 4.22: Chattering of range-rate (Scenario C). (a) FWF, (b) BCR, (c) NCR. 

116 



www.manaraa.com

Ph D Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

Observations from the Overall Simulation Results 

Examining simulation results for Scenario A, B and C, we can make the following 

important observations 

• All simulations confirm that as the cognitive radar becomes more and more 

sophisticated, starting from the basic cognition to a fully cognition enabled by 

memory, the system performance becomes better and better 

• From Figures 4 1,4 7, and 4 18, we can conclude that the performance enhance­

ments are about in the order of 30 1, 25 1, and 7 1 These values explain 

the fact that as difficulties of the tasks increase, the performance enhancement 

a cognitive radar can make decreases 

• The waveform transition figures for all scenarios tends to suggest that for the 

scenarios employed in this thesis, the optimal waveform parameters are both 

the maximal values m the waveform library 

4.5 Summary 

In this chapter, three scenarios were designed to challenge the capability of basic 

cognitive radar and nested cognitive radar Computer simulations validated the im­

proved performance of each member of the cognitive radar family by adding the 

essential components one by one 

• Global feedback from the receiver to the transmitter has provided basic compu­

tational intelligence to cognitive radar, which leads to a noticeable performance 

improvement of a cognitive radar compared to a traditional one 
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• Furthermore, equipping the radar with three memories within the perception-

action cycle has distinguished the nested cognitive radar from the basic cognitive 

radar. The three memories are perceptual memory in the receiver, executive 

memory in the transmitter, and coordinating perception-action memory that 

reciprocally couples the first two. The net result of having both the global 

feedback and three memory components is improved information processing 

power. 

The first scenario considered a linear target tracking problem. The Kalman filter 

(KF) was employed in the radar tracker. A significant enhancement of radar resolution 

was obtained using the basic cognitive radar, and even more so when memory was 

incorporated into the perception-action cycle. 

To go beyond the conventional Kalman filter, Scenario B selected to track a falling 

object in space. The cubature Kalman filter (CKF) was used as a radar tracker. Sim­

ulation results confirmed that the basic cognitive radar outperformed a conventional 

radar by an order of magnitude, and the nested cognitive radar enhanced the perfor­

mance even further. Two cases of dynamic programming were considered, i.e. the 

special case, namely dynamic optimization for horizon-length L = 1, and dynamic 

programming with L = 2. A comparison between them demonstrated that increas­

ing the length of horizon contributed positively to the performance enhancement of 

cognitive radar. 

Scenario C was the most challenging one. A high-dimensional target tracking prob­

lem with continuous-discrete model was considered, based on which the continuous-

discrete cubature Kalman filter (CD-CKF) was employed. A surprisingly good per­

formance was obtained with cognitive radars. Of course, the nested cognitive radar 
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performed even better than its basic counterpart 

In all three scenarios, an interesting phenomenon were observed, that is, the ob-

servables obtained by cognitive radar were generally much noisier than those obtained 

by conventional radar This phenomenon is called the chattering effect in control sys­

tems To inspire future research, an m-depth discussion of chatting effect is conducted 

in Chapter 5 
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Chapter 5 

Underlying Physical Phenomena in 

Cognitive Radar 

Imagination is more important than knowledge. For knowledge is limited 

to all we now know and understand, while imagination embraces the entire 

world, and all there ever will be to know and understand. 

Albert Einstein 

In conducting the simulations in Chapter 4, an interesting phenomenon was ob­

served: the noisy observables enable the performance enhancement of the cognitive 

radar systems. This phenomenon was called the chattering effect. Unlike in the study 

of control systems, the simulation results in Chapter 4 confirmed that the chattering 

effect played a positive role in increasing the resolution of a radar system. In this 

chapter, we will study this effect by looking into its underlying physical phenomenon 
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5.1 Chat ter ing Effect 

For a cognitive radar system with system equation (2.4) and measurement equation 

(2.6), the main sources of uncertainty are: 

• Imperfect knowledge of the system-equation model f (•), 

• Imperfect knowledge of the measurement-equation model h(-), and 

• Imperfect knowledge of the measurement noise w^, which acts as the driving 

force. 

The uncertainties arising from the first two sources have been tackled by introducing 

the perceptual and executive memories into the perception-action cycle, where the 

system-equation model and measurement-equation model can be retrieved on-the-

fly. The driving force then becomes the main challenge in optimally controlling the 

environment. In modern control theory, techniques of high-gain feedback and sliding-

mode control are often applied to address the uncertainty of mathematical models 

[85, 86]. Sliding modes are the phenomena observed in a dynamic system, where the 

state changes discontinuously with the high-frequency switching of control actions 

[87]. For a cognitive radar controlled by the measurement noise, the control action, 

i.e. the waveform, is selected in a frequency that is much faster than a classic control 

system. Therefore, the fast dynamics of environmental-scene analyzer and actuator 

may cause an interesting phenomenon, namely the chattering effect, defined in the 

following: 

Definition 5.1 (Chattering Effect). The chattering effect is a physical phenomenon 

of the high-frequency and finite amplitude oscillations appearing in a control system, 

where the actions are taken discontinuously. • 
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Most of the research in chattering analysis concludes that the chattering effect is 

a harmful phenomenon since it leads to a low control accuracy and high heat losses in 

electrical circuits Needless to say, this conclusion is very true for a dynamic system 

in which the control variable explicitly appears in the system equation A cognitive 

system modeled by (2 6) avoids this harmful condition by having measurement noise 

Wfc(0fc_i) as the control variable, where 0k-\ is the radar waveform As such, unlike 

the study of chattering in shdmg-mode control focusing on the system state, in our 

study it is the chattering of measurements which result directly from the measurement 

noise 

5.1.1 Mathematical Definition of Chattering 

The definition of chattering depends closely on the time and coordinate scales [88] 

The chattering of a signal is defined with respect to a reference or nominal signal 

While linear functions of time do not experience the chattering effect, any other 

nonlinear function experiences it to some extent, be it low or high We can therefore 

define the reference signal at zero level of the chattering effect and study the difference 

between another signal and the reference signal 

For the simplicity of exposition, let us consider a continuous real signal s(t) € R 

with t 6 [£1,̂ 2] Its reference signal is another continuous real signal s(t) £ K The 

disturbance is assumed to be derivable, defined as 

As{t) = s(t) - s(t) (5 1) 

The disturbance As(t) can be regarded as a heat-release process with a rate of As(t) 

Here As(t) is the derivative of the disturbance As(t) To elaborate the heat-release 
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process, consider a furnace of high temperature The quantity of heat released by 

this furnace per second defines the heat-release rate Obviously, the environment 

temperature defines the reference signal in this case Note that the heat-release rate 

in this definition is not based on a normalized value compared to the terminology in 

thermodynamics If we divide our heat-release rate by the total heat volume of the 

furnace, 1 e , f 2 s(t)dt, we then obtain the normalized heat-release rate 

The /^-chattering of s(t) is the C\ distance between s(t) and s(t), defined as 

£i-chat(s, s 
ft, 

,tut2)= \ \s(t) -s{t)\dt (5 2) 

The definition of Eq (5 2) illustrates the physical resemblance of £i-chattenng, that 

is, it defines the energy required to reduce the disturbance 

Quite often m practical applications, we also need to represent the chattering 

effect in an £2 or even £p sense We then have the £2-chattenng and £p-chattermg 

defined respectively as 

r ft2 2 
£2-chat(s,s,ii,^2) = / \s{t) — s(t)\ dt 

1/2 

(5 3) 

and 

£p-chat(s, s, £i,<2) = [s{t) - s{t)]p dt 
I/P 

(5 4) 

Having the mathematical definitions presented in (5 2) to (5 4), we may discuss 

different categories of the chattering effect In order to classify it, we follow Leveant's 

proposition in [88] Define c as the chattering parameter to measure the imperfections 
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of the model for which we write 

s{t) = lim s(t,e) (5.5) 

for £ G [ti, ̂ 2] • F° r cognitive radar, we use e to denote the interference or disturbance 

in the measurement model. 

Let us take the £p-chattering as an example; it can be classified into three cate­

gories: 

Definition 5.2 (Infinitesimal Chattering). The Cp-chattering of signal s(t) is 

infinitesimal chattering if 

lim £p-chat(s, s, t\, £2) — 0, (5.6) 

which means that the heat is completely released as the imperfections of signal model 

tends to zero. • 

Definition 5.3 (Bounded Chattering). The Cp-chattering of signal s(t) is bounded 

chattering if 

lim £p-chat(s, s, t\, £2) > 0, (5 7) 

which means that a fixed amount of heat is kept in the signal as the imperfections of 

signal model tends to zero. • 

Definition 5.4 (Unbounded Chattering). The Cp-chattering of signal s(t) is un­

bounded chattering if 

lim>Cp-chat(s, s, £1,̂ 2) = 00, (5.8) 
£—>0 
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which means that the heat released is not bounded even if the signal model is perfectly 

known. • 

Using this definition and the measurement equation (2.6) and also assuming there 

is no external interference, we could define the £p-chattering of measurement as fol­

lows: 

£p-chat(z, z, ti, t2) [z(t) - z(t)}pdt 
i / p 

(5.9) 

for t G [tl,t2\. 

For the measurement obtained by a discrete sensor, we can further approximate 

the £p-chattering (5.9) as follows: 

Cp-ch&t(z,2,,t1,t2) 
M - | 1 / P 

£w^-i)r 

.*;=! 

(5.10) 

where T is the sampling time and M = (t2 — t\)/T. 

Two comments are made sequentially about this definition: 

1. The value of £p-chattering reflects the total heat stored in the system within the 

duration of [ii,^]- To compare the £p-chattering of two measurement systems 

S\ and S2, we offer the following scenarios: 

• If Cp-chat(Si) > £p-chat(<S2), then the system S\ is said to be warmer 

than £2; 

• If Cp-chat(Si) = £p-chat(iS2), then the system S\ is said to be equally 

warm with S2; 
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• If £p-chat(<Si) < £p-chat(52), then the system 5j is said to be cooler than 

S2, 

2 The approximation of (5 10) is valid under the assumption that the measure­

ment noise is a zero-mean white Gaussian process 

For the measurement system, the unbounded chattering is obviously destructive 

Furthermore, the infinitesimal chattering is not desirable for a cognitive radar system 

because the system relies on measurement noise to control the accuracy of the state 

estimation We conclude that the bounded chattering is the most realistic and also 

beneficial condition for cognitive radar As previously mentioned, the chattering effect 

can be regarded as the result of heat release process in the system, the bounded 

chattering can therefore guarantee that the system is warm enough to sustain the 

performance enhancement in the cognitive radar system 

5.1.2 Chattering Effect in Variable Structure Systems 

As we have stated earlier in this chapter, the chattering effect m cognitive radar is due 

to uncertainty in the system model, specifically the measurement equation At each 

time step, a measurement model is retrieved from the memory to reflect an updated 

knowledge about the target These measurement models collectively define a variable 

structure system of the following form 

z(t) = h(x(t),e,t), ( 5 i i ) 
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r i T 

where h( ) = ^i() , / i2() , ,hn() is a piecewise continuous function The piece-

wise continuity property of these subsystems makes the system switch between differ­

ent mathematical models stored in the executive memory, hence the name variable 

structure system (VSS) [86] As such, the method of controlling a variable structure 

system is referred to as variable structure control (VSC), which was first studied in 

early 1950's by Emelyanov and his coresearchers [89] Currently, the main method 

used for VSC is sliding mode control [87], which is less sensitive to system-parameter 

uncertainty but highly possible of causing chattering problem in target state [90] In 

the VSS framework of cognitive radar, the reduction of the chattering effect in the sys­

tem equation requires an iterative filtering algorithm Recently, a variable structure 

filter (VSF) has been proposed to accommodate model uncertainties [91], where the 

conventional Kalman filter gam is redesigned to reflect the noise uncertainty existing 

in a linear system Revisiting the derivation of the cubature Kalman filter m Chapter 

2 reveals a similar strategy m the nonlinear filtering algorithm, where the waveform 

dk-i is incorporated into the time update step of the CKF Therefore, we say that 

the CKF algorithm employed inside the perception-action cycle of the cognitive radar 

actually becomes a nonlinear variable structure filter A question that we may ask is 

Is it possible to say that we also have a positive form of the chattering effect in the 

human brain? 

5.1.3 Chattering Effect in Cognitive Radar in Light of Ex­

perimental Results 

Bearing the discussion of sources for the chattering effect in mind, we say that the 

objective of an optimal waveform control strategy for the variable structure system is 
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to reduce the target state chattering effect as much as possible, which is demonstrated 

by the root mean-squared errors (RMSEs) shown in Chapter 4 Generally speaking, 

the minimization of mean-squared error of target state is identical to the reduction 

of chattering Since the state of the target is hidden from the observer, we are 

faced with an imperfect-state information problem So we may estimate the state by 

having dnect access to the measurements obtained by the radar receiver As such, 

the chattering effect pertained to the measurements can help us gam insights into 

the mechanism of cognitive radar system To ease our analysis in this chapter, we 

reproduce the chattering effects obtained in Chapter 4, shown in Figures 5 1,52 and 

5 3 for Scenario A, Scenario B and Scenario C, respectively 
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Figure 5.1: Chattering effect in Scenario A. (a)-(c) range, (d)-(f) range-rate. (Repro­
duced from Figures 4.4 and 4.5) 
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Figure 5.2: Chattering effect in Scenario B. (a)-(c) range, (d)-(f) range-rate. (Repro­
duced from Figures 4.11 and 4.12) 
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Figure 5.3: Chattering effect in Scenario C. (a)-(c) range, (d)-(f) range-rate. (Repro­
duced from Figures 4.21 and 4.22) 
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Observat ions from Simulat ion Resu l t s 

A close observation of these results may remind us the following important aspects 

about the chattering effect 

1 All figures confirm that the bounded chattering in measurement space is the 

most realistic type Hence cognitive radar is able to benefit from this bounded 

chattering 

2 Obviously, the chattering effects we observed m cognitive radar are much higher 

than those obtained in a conventional radar, which states that measurement 

noise acts as the driving force for reduction of state estimation error Generally 

speaking, a warm chattering in measurement space is expected in cognitive 

radar 

3 As we can see from Figure 5 1, for a linear target tracking problem, the nested 

cognitive radar needs a warmer chattering to increase the range accuracy com­

pared to its basic counterpart Nevertheless, the nested cognitive radar needs a 

cooler chattering to increase the range-rate accuracy 

4 From Figure 5 2(f), we see that a strange chattering pattern happened in the 

range-rate At the initial stage of the tracking The nested cognitive radar 

makes use of a periodical warm-cool chattering to increase its resolution over 

the basic cognitive radar 
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5.2 Behaviour of Cognitive Radar in the Presence 

of External Disturbance 

Normally, the system equation should be provided for the two steps of the filtering 

algorithm employed in a radar tracker, be it cognitive or non-cognitive. For a con­

ventional radar system and memoryless cognitive radar system, parameters of the 

system equation are assumed to be available at each time step deterministically. This 

process is not affected by the changes of the environment that the target resides in. 

However, for cognitive radar system enabled with the memory, neural networks are 

designed to store the features related to the system equation. The retrieval process 

at each time step is closely related to changes of the environment. 

These claims about the difference between memoryless radar system and memory-

enabled radar system are true provided that the assumption of reasonably mild white 

noise is satisfied. Take Scenario A, i.e. the linear target tracking problem, as an 

example, the white noise vfc in system equation (4.1) models all the noises that are 

added to the states of the target. Presumably, these noises include the wind, cloud 

and other climatic facts mostly. Obviously, the study of each factor can be a research 

topic of its own. To be more specific, the analysis of the wind-excited response of 

flying objects requires a careful modeling of the wind field, which is usually called 

turbulence [92]. All of these factors can be considered as the disturbance to the 

target trajectory, which we have denoted by Vfc in all simulations. In Chapter 4, 

we focused on a relatively stationary environment, where the covariance of vfc, i.e. 

E{vfcvjT} = Qfe, is fixed. We call this case the single-mode disturbance. 
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In practical applications, we may encounter another case where the target's tra­

jectory is sharply affected by a strong disturbance for a short period of time We call 

this problem target tracking in multi-mode disturbance In this section, we offer an 

extended simulation of Scenario A presented in Chapter 4 to experimentally study 

the behaviour of cognitive radai system in this scenario For simplicity m exposition, 

here we recompose the system equation (4 1) as follows 

xfe = Ffcxfe_i + vfe + dk, 

where F/. is the state transition model, v& is a white Gaussian noise, and the distur­

bance dfc is assumed to be Gaussian attributed to turbulence We further assume that 

Vfc and dfc are jointly Gaussian, then the linear combination of v^ and d,t is also Gaus­

sian [93] Here, we define that v^ -t-d^ has a covanance E{(vfc + d/c)(vfe + dk)T} = Q/c 

Two system noise covanances are considered [94], as follows 

1 Constant-velocity (CV) noise 

Q cv 'v+d 

T3 /3 T2/2 

T2/2 T 

2 Constant-acceleration (CA) noise 

Qca - o-v+d 
T4/4 T3/2 

T3/2 T2 

where cr2
+d characterizes the level of disturbance 
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colored noise 

• 

Figure 5.4: Block diagram of a low-pass Gaussian filter. 

To configure the environment, it is assumed that the target travels toward the 

radar linearly from 3 km with speed 200 m/s. For the first 2 seconds, it encounters a 

small enough disturbance of <7v+d = 0.7. It then reaches to a moderately disturbing 

environment, where the noise av+d = 4. After another 2 seconds, the target gets out 

of the region with high disturbance and travels linearly along in a disturbance of 0.7. 

The radar is configured in the same way as Scenario A of Section 4.2. 

In an effort to emulate the disturbance due to turbulence, the Gaussian noise is 

passed through a low-pass Gaussian filter before it is added to the system equation, 

demonstrated by Figure 5.4. The cut-off frequency is assumed to be 300 Hz. The 

frequency spectra for both the filtered Gaussian noise and white Gaussian noise are 

also depicted in Figure 5.5, where the spectra are based on a 1024-point fast Fourier 

transform (FFT). 

The RMSE results are plotted in Figures 5.6, 5.7, 5.9 and 5.10, where Figures 5.6 

and 5.7 depict the radar behaviour in constant-velocity disturbance, and Figures 5.9 

and 5.10 depict the radar behaviour in constant-acceleration disturbance. 

Recalling that the mathematical framework of the chattering effect has been devel­

oped in the first part of this chapter, it is also necessary to study the chattering effects 

that happen in the presence of a moderate disturbance. Figures 5.8 and 5.11 show the 
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Single-Sided Amplitude Spectrum 

10° : Before Filtered -
After Filtered 

0 100 200 300 400 500 
Frequency (Hz) 

Figure 5 5 Smgle-sided amplitude spectrum for Gaussian noise before and after it is 
filtered by a Gaussian filter 

chattering effects under the constant-velocity disturbance and constant-acceleration 

disturbance, respectively Referring to the NCR, we see a warmer chattering in the 

range domain, depicted by Figures 5 8(c) and 5 11(c), and a cooler chattering in the 

range-rate domain, depicted by Figures 5 8(f) and 5 11(f), comparing to the BCR 

Interestingly, when the moderate disturbance appears m time duration 2 ^ 4 seconds, 

we observe that both the BCR and NCR demonstrate a calm chattering behaviour 

The explanation we may offer is that moderate turbulence appears only in the system 

equation The turbulence has no direct influence on the measurements chattering 

Insofar as the level of the disturbance is concerned, the moderate disturbance 

poses a great challenge to traditional radar and even the basic cognitive radar The 

nested cognitive radar can nevertheless mitigate this problem by having the memory 

component along with the basic perception-action cycle To look into the behaviour of 
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cognitive radar in different level of disturbance, more simulations are also needed To 

emulate low disturbances, we select crv+d = 1, based on which Figures 5 12 and 5 13 

respectively depict the RMSE results for constant-velocity disturbance, and Figures 

5 15 and 5 16 respectively depict the RMSE results for constant-acceleration distur­

bance Similarly, to emulate high disturbances, we select crv+d = 40 Figures 5 18 

and 5 19 respectively depict the RMSE results for high constant-velocity disturbance, 

and Figures 5 21 and 5 22 respectively depict the RMSE results for high constant-

acceleration disturbance Similar to the moderate disturbance, the chattering effects 

are also plotted in Figures 5 14 and 5 17 for low disturbance, and in Figures 5 20 and 

5 23 for high disturbance, respectively 

Low Disturbance (<7v+d = 1) 

EA-RMSE 

FWF 

BCR 

NCR 

Range (meters) 

0 3465 

0 1469 

0 0591 

Moderate Distur 

Range-rate (meters/second) 

12848 

0 6818 

0 1163 

aance (<7v+d = 4) 

EA-RMSE 

FWF 

BCR 

NCR 

Range (meters) 

0 3547 

0 1641 

0 0670 

Range-rate (meters/second) 

15244 

0 8915 

0 1377 

High Disturbance (<7v+d = 40) 

EA-RMSE 

FWF 

BCR 

NCR 

Range (meters) 

0 4271 

0 3413 

0 1411 

Range-rate (meters/second) 

4 5346 

2 6280 

0 2568 

Table 5 1 Ensemble-averaged RMSE for FWF, BCR and NCR with different level 
of constant-velocity disturbance Scenario A 
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Low Turbulence (<rv+d = 1) 

EA-RMSE 

FWF 

BCR 

NCR 

Range (meters) 

0.3412 

0.1237 

0.0357 

Moderate Turbu 

Range-rate (meters/second) 

0.5075 

0.2068 

0.0402 

ence (<7v+d = 4) 
EA-RMSE 

FWF 

BCR 

NCR 

Range (meters) 

0.3393 

0.1244 

0.0406 

Range-rate (meters/second) 

0.5237 

0.2112 

0.0402 

High Turbulence (<Jv+d = 40) 

EA-RMSE 

FWF 

BCR 

NCR 

Range (meters) 

0.3483 

0.1249 

0.0499 

Range-rate (meters/second) 

0.5356 

0.2419 

0.0770 

Table 5.2: Ensemble-averaged RMSE for FWF, BCR and NCR with different level 
of constant-acceleration turbulence: Scenario A 

To summarize, the EA-RMSE results for different level of constant-velocity and 

constant-acceleration disturbances are listed in Table 5.1 and Table 5.2, respectively. 

All results show that a warm chattering in range and a cool chattering in range-rate 

are beneficial to nested cognitive radar, compared to basic cognitive radar. 
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Figure 5 6 RMSE of target range for moderate constant-velocity disturbance (l) 
conventional radar equipped with fixed waveform (dotted line), (n) basic cognitive 
radar (dashed line), and (m) nested cognitive radar (solid line) 
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Figure 5 7 RMSE of target range-rate for moderate constant-velocity disturbance 
(I) conventional radar equipped with fixed waveform (dotted line), (n) basic cognitive 
radar (dashed line), and (m) nested cognitive radar (solid line) 
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Figure 5.8: Chattering of range and range-rate in moderate constant-velocity distur­
bance. (a)-(c) range, (d)-(f) range-rate. 
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Figure 5 9 RMSE of target range for moderate constant-acceleration disturbance 
(I) conventional radar equipped with fixed waveform (dotted line), (n) basic cognitive 
radar (dashed line), and (in) nested cognitive radar (solid line) 
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Figure 5 10 RMSE of target range-rate for moderate constant-acceleration distur­
bance (l) conventional radar equipped with fixed waveform (dotted line), (n) basic 
cognitive radar (dashed line), and (in) nested cognitive radar (solid line) 
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Figure 5.11: Chattering of range and range-rate in moderate constant-acceleration 
disturbance, (a)-(c) range, (d)-(f) range-rate. 
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Figure 5 12 RMSE of target range for low constant-velocity disturbance (I) con­
ventional radar equipped with fixed waveform (dotted line), (n) basic cognitive radar 
(dashed line), and (m) nested cognitive radar (solid line) 
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Figure 5 13 RMSE of target range-rate for low constant-velocity disturbance (l) 
conventional radar equipped with fixed waveform (dotted line), (n) basic cognitive 
radar (dashed line), and (m) nested cognitive radar (solid line) 
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Figure 5.14: Chattering of range and range-rate in low constant-velocity disturbance. 
(a)-(c) range, (d)-(f) range-rate. 
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Figure 5 15 RMSE of target range for low constant-acceleration disturbance (l) 
conventional radar equipped with fixed waveform (dotted line), (n) basic cognitive 
radar (dashed line), and (m) nested cognitive radar (solid line) 
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Figure 5 16 RMSE of target range-rate for low constant-acceleration disturbance (l) 
conventional radar equipped with fixed waveform (dotted line), (n) basic cognitive 
radar (dashed line), and (m) nested cognitive radar (solid line) 
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Figure 5.17: Chattering of range and range-rate in low constant-acceleration distur­
bance. (a)-(c) range, (d)-(f) range-rate. 

146 



www.manaraa.com

Ph.D. Thesis - Yanbo Xue McMaster - Electrical k. Computer Engineering 

10" 

at 
en 
CC 10 

10' 

I . I I I " 

Turbulence Duration 

*H 

(l) FWF 
•(ll) BCR 
•(ill) NCR 

J-' 

2 3 

Time (s) 

Figure 5.18: RMSE of target range for high constant-velocity disturbance, (i) con­
ventional radar equipped with fixed waveform (dotted line), (ii) basic cognitive radar 
(dashed line), and (iii) nested cognitive radar (solid line). 
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Figure 5.19: RMSE of target range-rate for high constant-velocity disturbance, (l) 
conventional radar equipped with fixed waveform (dotted line), (ii) basic cognitive 
radar (dashed line), and (iii) nested cognitive radar (solid line). 
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Figure 5.20: Chattering of range and range-rate in high constant-velocity disturbance. 
(a)-(c) range, (d)-(f) range-rate. 
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Figure 5 21 RMSE of target range for high constant-acceleration disturbance (I) 
conventional radar equipped with fixed waveform (dotted line), (n) basic cognitive 
radar (dashed line), and (m) nested cognitive radar (solid line) 
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Figure 5 22 RMSE of target range-rate for high constant-acceleration disturbance 
(I) conventional radar equipped with fixed waveform (dotted line), (n) basic cognitive 
radar (dashed line), and (m) nested cognitive radar (solid line) 
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Figure 5.23: Chattering of range and range-rate in high constant-acceleration distur­
bance. (a)-(c) range, (d)-(f) range-rate. 
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Observations from Simulation Results 

Examining all the simulation results in this section, we have the following observations 

about the behaviour of cognitive radar in the presence of external disturbance 

1 From Figures 5 12, 5 6 and 5 18, we see that as the level of disturbance in­

creases, it becomes more and more difficult for the BCR to provide a good 

performance For the low disturbance, the BCR has a reasonable performance 

As the disturbance reaches moderate level, the BCR struggles to mitigate the 

impact of disturbance on its performance Furthermore, when the disturbance 

is high, the BCR breaks down into what appears to be an oscillatory behaviour 

Interestingly enough, the NCR still performs well for all levels of disturbance 

These results prove that feedback is indeed a double-edged sword It will be 

detrimental if the feedback is not carefully designed Obviously, the NCR can 

efficiently alleviate this problem thanks to the embedding of three memories 

withm the basic perception-action cycle In the NCR, the negative impact of 

disturbance is confined to its occurrence duration 

2 Comparing Figure 5 6 and Figure 5 9, we see that the range resolution of cog­

nitive radar is moie sensitive to the constant-velocity disturbance than the 

constant-acceleration disturbance While Figures 5 7 and 5 10 show that the 

range-rate resolution is sensitive to both constant-velocity and constant-acceleration 

disturbances 
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5.3 Summary 

Two underlying physical phenomena were discussed in this chapter, namely the chat­

tering effect and multi-mode disturbance In an effort to analyze the chattering effect, 

a mathematical model of an £p-chattermg was defined Different from the role of the 

chattering effect in variable structure systems, we conclude that the chattering effect 

happening in the measurement space is very beneficial to the performance enhance­

ment of cognitive radar Generally speaking, the cognitive radar system encounters 

a higher-level chattering effect compared to conventional radar with fixed waveform 

Furthermore, rather than merely increasing the chattering level, the nested cognitive 

radar increases the resolution by utilizing the chattering effect more efficiently 

To further study the behaviour of cognitive radar in the presence of different level 

of disturbance, we conducted extensive computer simulations Simulation results 

proved that, for low disturbance, the basic cognitive radar can improve the resolu­

tion for both the constant-velocity disturbance and constant-acceleration disturbance, 

compared to conventional radar with fixed waveform However, as the level of distur­

bance increases, the BCR exhibits a struggling behaviour It almost breaks down for 

an intensively high disturbance Interesting enough, the NCR enabled with memory 

performs well for all disturbance levels Most importantly, it can adjust quickly to 

withstand the impact of disturbance 
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Chapter 6 

Conclusions and Future Research 

The last part of an endeavor is the hardest to finish 

An ancient Chinese proverb 

6.1 Concluding Remarks 

For over six decades, the theory and design of radar systems have been dominated by 

probability theory and statistics, information theory, signal processing and control 

However, the similar encoding-decoding property that exists between the visual bram 

and radar has been sadly overlooked in all radar systems A lesson we have learned is 

that there is much that we can learn from the mammalian bram in an effort to build 

a new generation of radar systems 

In this thesis, we have presented the underlying theory of cognitive radar m a 

progressive way, starting from the basic cognitive radar that has only the perception-

action cycle in the basic form to the nested cognitive radar equipped with memory 

Extensive computer simulations were conducted to demonstrate the ability of this 
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new radar concept in significantly outperforming a traditional radar tracker The 

following ideas have been exploited in the thesis 

Optimal Bayesian filter A recently proposed nonlinear filter, namely the cu-

bature Kalman filter (CKF), as well as the continuous-discrete CKF (CD-CKF), is 

employed in the receiver for perception of radar environment This new filter is the 

best known approximation to optimal Bayesian filter under Gaussiamty assumption 

Approximate dynamic programming algorithm A new dynamic program­

ming algorithm, namely dynamic optimization for length of horizon L = 1, is designed 

to control the waveform selection in the transmitter This novel algorithm derives its 

information-processing power m two important ways 

• First, it is based on the notion of imperfect-state information, which gets around 

the fact that Bellman's dynamic programming requires perfect knowledge of the 

state, whereas m a real-world environment, the state is hidden from the radar 

• Second, cubature rule of third degree is used in the approximation of certain 

integrals involved in deriving the dynamic optimization algorithm 

Memory The cognitive radar is equipped with perceptual memory in the re­

ceiver, executive memory in the transmitter, and the coordinating perception-action 

memory that reciprocally couples the two aforementioned memories To distinguish 

all generations of the cognitive radar systems, we name the cognitive radar equipped 

with the basic perception-action cycle the basic cognitive radar and the one equipped 

with nested memory the nested cognitive radar 

Attention To selectively allocate the available information-processing resources 

in the cognitive radar, we have also developed perceptual attention and executive 

attention m the nested and hierarchical cognitive radar systems Using attention, the 
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feedback-information metric can be built to optimally allocate the resources pertain­

ing to the cognitive radar system 

Intelligence Among the four properties of cognitive radar, 1 e perception, mem­

ory, attention and intelligence, intelligence stands out as the most complex one due 

to the fact that the other three properties make contributions to intelligence m their 

own individual ways Also, there is no separate structure of group of structures ded­

icated to intelligence as a separate functional block of the system A comment that 

we can make here is that through the use of approximate dynamic programming, 

the cognitive radar becomes increasingly more intelligent as the feedback-information 

metric is progressively minimized, cycle after cycle 

6.2 Future Research Directions 

In developing the underlying theory and system structure of cognitive radar, we found 

that there is still much future research that needs to be done in the application of 

cognition to radar systems We summarize three future directions as follows 

New lower bound for cognitive radar To assess the performance of an esti­

mator, a lower bound is always desirable The Cramer-Rao lower bound (CRLB) is 

a lower bound that is commonly used in time-invariant systems It can be easily cal­

culated as the inverse of Fisher information matrix The CRLB represents the lowest 

possible mean squared error (MSE) for all unbiased estimators For a dynamic sys­

tem that is generally nonlinear, a similar version of the CRLB, namely the posterior 

Cramer-Rao lower bound (PCRB), was derived in [95] To calculate it in an on-line 

manner, an iterative version of the PCRB was proposed in [96], where the posterior 

information matrix of the hidden state is decomposed for each discrete time instant 
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by virtue of the factorization of the joint probability density of the state variables 

In this way, an iterative structure is obtained for the evolution of the information 

matrices 

Until now, utility of a lower bound has focused on traditional unbiased estimators, 

be it linear or nonlinear, continuous or discrete For the cognitive radar system pro­

posed m this thesis, we obviously have a feedback system, which means the estimator 

may be biased through continuous interactions between the system and the environ­

ment Although the CRLB of an biased estimator is derived m [95], its calculation 

requires knowledge of the bias gradient matrix, which often does not exist Hence, 

it is of limited practical value In saying so, a new lower bound is needed for cogni­

tive radar Future research should be able to address this problem in the following 

manner 

• Under the framework of the basic cognitive radar, our first task is to develop a 

lower bound that uses available knowledge Considering that a basic cognitive 

radar system is dynamic, the lower bound would have to be calculated ltera-

tively In a mathematical context, derivation of such a bound may well prove 

to be a challenging task 

• However, when we move onto the nested cognitive radar the system becomes 

much more complicated because of the many feedback loops, global as well as 

local that are distributed throughout the system and the fact that all three 

memory units m the system are nonlmeai In this new situation, we may have 

to be content with the use of Monte Carlo simulations to provide an assessment 

of overall system performance 

Chattering effect Chattering effect has engaged a lot of control engineers' effort 
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in recent years Although we have provided a mathematical analysis of chattering 

effect in cognitive radar, it is still in its primitive stage Future research on the 

chattering effect will meet the following challenges 

• The benefits a cognitive radar can gain from chattering effect should be formu­

lated quantitatively 

• The simulation results have also demonstrated another fact, which says the 

memory component in a nested cognitive radar is able to utilize the chattering 

effect more efficiently than a basic cognitive radar More research is needed to 

discover the secret behind this fact 

External disturbance Simulations conducted m Chaptei 5 have shown that 

external disturbance is detrimental to the behavior of cognitive radar without memory 

With the existence of external disturbance, basic cognitive radar exhibits difficulties 

in getting back to original operation However, adding memory will confine the impact 

of disturbance to its minimum Future research under this topic should follow the 

following directions 

• The reasons that basic cognitive radar fails and nested cognitive radar succeeds 

in the presence of external disturbance is an interesting topic that deserves 

attention 

• The capacity of nested cognitive radar to withstand external disturbance can 

be regarded as a joint research topic accompanied by the stability and lower 

bound study described earlier on in this section 
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Appendix A 

Cubature Kalman Filter (CKF) 

The cubature Kalman filter is the closest known approximation to the Bayesian fil­

ter that could be designed in a nonlinear setting under the key assumption: The 

predictive density of the joint state-measurement random variable is Gaussian [56]. 

Under this assumption, the optimal Bayesian filter reduces to the problem of how to 

compute moment integrals whose integrands are of the following form: 

nonlinear function x Gaussian. (A.l) 

To numerically compute integrals whose integrands are of this form, we use a rule 

described next. 

The Cubature Rule of Third Degree 

Consider an example of the integrand described in Eq. (A.l), which consists of the 

nonlinear function f(x) multiplied by a multivariate Gaussian density denoted by 
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7V(x;/x,£), where /z is the mean and £ is the covariance. According to the third-

degree cubature rule [97], the resulting integral may be approximated as follows: 

2n 

/ f (XyV(x;/*, £)dx ~ - V f ( / i + \ / S a , ) (A.2) 
JMNT In ^ 

where Nx is the state-space dimension, and a square-root factor of the state-estimation 

error covariance X 

points is given by 

error covariance £ satisfies the factorization £ = \ / £ \ / £ ; the set of 2n cubature 

a, = < 
me,, i = 1,2 . . . n 

(A.3) 
— y/nel-n, i = n + l ,n + 2 . .. 2n. 

with e, G MWT denoting the i-th elementary column vector. The CKF specifically uses 

the third-degree cubature rule to numerically compute Gaussian weighted integrals 

[97]. This rule is exact for integrands being polynomials of degree up to three or any 

odd integer. 

Next, we present the CKF's two-step update cycle, namely, the time update and 

the measurement update, as described next. 

Time Update 

In the time-update step, the CKF [56] computes the mean xjt|fc_i and the associated 

covariance F*fe|fc_i of the Gaussian predictive density numerically using cubature rules. 
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We write the predicted mean as follows 

xfejfc_i = E[xfc|Zfc-i], (A.4) 

where E [•] is the statistical expectation operator; Z& is the history of measurements 

available up to time k. Substituting the system equation (2.4) into Eq. (A.4) yields 

xfc|fc_! = E[f(xfc_i) + Vfc|Zfc_i]. (A.5) 

Because v^ is assumed to be zero-mean and uncorrelated with the measurement 

sequence, we get 

Xfcifc.! = E[f(xfc_i)|Zfc_1] 

= / f(xfc_1)p(xfc_i|Zfc_1)dxfc_i 
JRNT 

= / f(xfc_1)A/'(xfc_i;xfc_i|fc_i,Pfc_1|fe_1)dxfc_i, (A.6) 

where, as before, J\f(.;.,.) is the conventional symbol for a Gaussian density. Similarly, 

we obtain the associated error covariance 

Pfclfc-i = E[(xfc — Xjfc|fc_i)(xfc — Xfcifc-i) |Zfc_i] 

= / f(xfc_i)fr(xfc_i)A/'(xfc_i;xfc_1|fc_1,Pfc_1|fc_i)(ixfc_1 

-Xfcik-iXfcjfc-i + Qk-i, (A.7) 

where Qfc is the covariance of system noise vfc. 
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Measurement Update 

Recognizing that the so-called innovation process is not only white but also zero-mean 

Gaussian when the additive measurement noise is Gaussian, the predicted measure­

ment may be estimated in the least-square error sense In this case, we write the 

predicted measurement density (also called the filter likelihood density) as follows 

p(zfc|Zfc_i) = ./vr(zfc,Zfc|fc_1,Pzzfc|jic_i), (A 8) 

where the predicted measuiement itself and the associated covanance are respectively 

given by 

Zfcifc.! = / h(xfc)A/'(xfc,xfc|fc_i,Pfc|fc_i)dxfe (A 9) 
JmNx 

Pzz,k|fc-i = / h(xfc)h
T(xfc)A/'(xfc,xfc|/c_i,Pfe|fc_1)rfxfe 

~Zfe|fc-izfc|fc_1 +Rfc(0fc_i) (A 10) 

Accordingly, we may write the Gaussian conditional density of the joint state and 

measurement 

paxM3^) = N 

where the cross-covanance is 

/ 

V 

Xfc|fc-1 

Zfcjfc-l 

Pfc|fc-1 Pxz /c | / c - l 

z,fc|fc-l "zzfc|fc-l 

\ 

. (AH; 

xz k\k—\ / Xfeh r(x /fc)A^(x fc,x/c | fc_i,P fc | fc_1)dx fc — Xfc|fc_izJjA._1 (A 12) 
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On the receipt of a new measurement zk, the CKF computes the posterior density 

p(xfc|Zfc) from Eq (A 11) yielding 

p(xk\Zk) = —fc> k fc-i ^ jV"(xfc,xfc|fc,Pfc|fc), (A 13) 
p(zk\Zk-i) 

where 

Xfc|fc = Xfcifc.i + G fc(z fc - Zfcjfc-i) (A 14) 

Pfc|fe — Pfc|fe-i — GfcPzzfci^-iGfc, (A 15) 

with the Kalman gam being defined by 

Gfc = PXZfc|fc-lPzzfc|fc-l (A 16) 

In summary, the CKF numerically computes Gaussian weighted integrals that are 

present in Eqs (A6)-(A7), (A 9)-(A 10) and (A 12) using cubature rules From 

Eqs (A 10) and (A 15) we notice that the error covanance matrix Pfc|fe indeed relies 

on the waveform parameter 6k-\, on which the radar transmitter acts at time k — 1 

For simplification of presentation, when we use Pk\k in the rest of the thesis, its full 

expression is Pfc|fc(0fc-i) 
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Appendix B 

Continuous-Discrete Cubature 

Kalman Filter (CD-CKF) 

In this appendix, we describe the two steps of continuous-discrete cubature Kalman 

filter (CD-CKF) [58] 

Time Update 

With the Ito-Taylor expansion of order 1 5, we can now update the posterior den­

sity of the state before the next observable is available Let us denote x™ as the 

intermediate state at time t = kT + m8, where m = 1, , T/5 Since x^ follows the 

Gaussian distribution, I e , Xfc ~ N{kk\k,~Pk\k)-, we may express the m-th predicted 

state estimate as 

x£jfc = E K | Z f c ] (B17) 

E fd(xfc, kT) + x/Qw + (Lf (xfc) kT))^\Zk (B\i 
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where u> and V a r e both independent Gaussian processes with UJ ~ J\f(0,5lNr), 

ip ~ Af{0, |<53IjvJ and E [u;i/>r] = \82lN,. We now simplify Eq. (B.18) to 

x£}fc = E[id(xk,kT)\Zk] 

fd(xfe, kT)J\f(xk; xfc|fc, Pklk)d-x.k. 
Rw ' 

(B.19) 

(B.20) 

Using the same strategy, we may also simplify the state-error covariance matrix 

% = E[(xr-x£[fc)(x^-x^)r|Zfc] (B.21) 

/ 
61 
3 
P 
2 

frf(xfc, kT)fJ{xk, kT)Af{xk; xfc|fc, Pfc|/c)a!xfc + 

(Lf (xfc, A;T))(Lf (xfc) kT))TAf(xk; xfc|fc, Pfc|fc)dxfc + 

^ Q ( x ^ ) r + ( x ^ ) V Q T l + ( x ^ ) ( x ^ ) T + (JQ, (B.22) 

where x£ffc = /RNT Lf(xfc, kT)Af(xk;xkik,Pk\k)dxk. 

For a system equation with mild nonlinearities, we could approximate its differ­

entials at time k by replacing xk with its filtered estimate x ^ . This assumption 

will eliminate the necessity to evaluate integrals for the higher-order expansion in Eq. 

(B.22) and yields 

k\k / fd(xfc, &T)fJ(xfc, kT)M{xk; xk, Pk\k)dxk 
JB.NT 

53 

U(xklk,kT))(U(xk]k,kT))T + 

Q(Lf (xfc|fc, kT))T + (Lf (xfc|fc, kT)) VQ7 

k\kJ\^k\k) 

3 
51 
2 

( x ^ ) ( x ^ ) T + SQ (B.23) 
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Using the third-order cubature rule to calculate the integrals numerically, we ob­

tain the state and error covariance as follows: 

Ntifc 

2n 

2n 
i = i 

(m) 
k\k 

*{m)\T 
% « (^OWirJ '+ jCLf (**!*, fcT))^*^,^))^ 

Q(Lf(x„fe,fcT))J +(Lf(xfc|fc,fcT))VQ + <5Q, 

(B.24) 

(B.25) 

where 

Y*(m) 
•^i,k\k 

y*(m) 
^k\k 

fd(xfc|fc + P1^al,kT) 

X l,fe|fc Sc|fc 
y*(m) 

yV'2,fc|fc Nc|fc yl2n,/c|/ic Afc|fc 

(B.26) 

, (B.27) 

where the cubature points a t are defined in accordance to Eq. (A.3), with 2n denoting 

the number of cubature points. 

Eqs. (B.24) and (B.25) are computed for m consecutive loops until we end up 

with the time update and obtain (x; fc|fc'A fc|fc/> which is used as the predicted state 

and its corresponding error covariance, i.e., (xfc+i|fc,P/c+1|fc). The state and its error 

covariance are updated upon receiving a new measurement at time tk+i = kT + mS. 

Measurement Update 

For the CD-CKF, the discrete measurement equation is same as that of the CKF. 

Therefore, for any new measurement Z&, we can use the same update strategy. The 

measurement update starts with the propagation of the cubature points to predict 
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the measurement and its associated covariance, expressed as 

1 In 

Zfc|fc-i = TT- 2_, Zi,k\k-\ (B.28) 

1 2ra 

Pzz,fe|fc-i = —̂ 2_^Z%,k\k-iZi,k\k-i ~ zfc|fc_izJb|A._1 +R f c(0 f c_i) , (B.29) 
1 = 1 

where 2n is the number of cubature points, and Z%^\k-\ is the z-th propagated cubature 

point originating from X ^ ^ - i , as given by 

^,/t|fc-i = P/cifc-^i + x/c|fc_i (B.30) 

Zi,k\k-i = h(Xj]fe|fc_i). (B.31) 

Similarly, the cross-covariance between the state and the measurement can be 

written as 

2n 
l 

xz,fc|fc 

1 2n 
1 = 2^z_^Xi,k\k-iZi,k\k-i -Xfc|fc-iZfc|fc_i- (B.32) 

1 = 1 

The new measurement z/. is then incorporated into the update of the state and 

its covariance, is given by: 

Xfc|fc = Xfc|fe_j + G fc(z fc - Zk\k-i) (B.33) 

Pfe|fc = Pfc|fe-i — G/cPzz.fcjfc-iGfc, (B.34) 

with the Kalman gam being defined by 

Gfc = Pxz,fc|fc-iPjZife|fc_i- (B.35) 
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Appendix C 

Approximate Dynamic 

Programming for Waveform 

Selection 

At any discrete time k, the waveform-selection algorithm seeks to find the set of best 

waveform parameters by minimizing a cost-to-go function for a rolling horizon of L 

steps, that is, to minimize the cost incurred in steps k : k + L — 1. Denoting the 

control policy for the next L steps by iTk = {/Ufc, • ••,Mfc+£-i} with the policy function 

/x(Ifc) = Ok £ ~Pk mapping the information vector into an action in the waveform 

library Vk, we wish to find a policy iTk at time k corresponding to the solution of the 

following minimization: 

minE 
'fc+L-l 

Yl 9(xM • (C36) 
%=k 

The cost function g(-, •) inside the summation is defined in (2.26). Obviously, for an 

L-step dynamic programming algorithm, we need to predict L-steps ahead, which 
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also means that accurate performance of the predictor m the receiver is of crucial 

importance to the cognitive tracking radar 

Algorithm Description 

As a general case of dynamic optimization algorithm described in Chapter 2, the 

recursive dynamic programming (DP) algorithm at time k is made up of two parts 

Terminal point 

J{h+L-i) = a mm 0(xfc+L_i,0;fc+z,-i) (C 37) 

Intermediate points 

J ( I P ) = mm [5(xp, ep) + EXp+1 ,p+1|Ip ev [JP+i\] (C 38) 

for p = k, , k + L — 2, where Jp+\ = i7(Ip, zp+1, 0P) and Vk is the waveform library 

at time k With Eq (C 37) pertaining to the terminal point, Eq (C 38) pertains to 

the intermediate points that go backward from the terminal point in (L — 1) steps 

The optimal policy {fi*k, ,Mfc+L-i) 1S obtained in the following two-step manner 

1 We first minimize the terminal point (C 37) for every possible value of the infor­

mation vector Ifc+L-i to obtain fi*k+L^1 Meanwhile, Jk+L-\ is also computed, 

2 Then, Jk+L-\ is substituted into the calculation of the intermediate points 

(C 38) to obtain /i£+L„2 over every possible value of Ik+L-2 This step is re­

peated until we reach the initial point with fi*k 
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Measurement Space Approximation 

The measurement space is an infinite dimensional continuous-valued space. Moreover, 

the dimension of this space grows exponentially with depth of the optimization horizon 

L. In fact, at each step of the optimization, we need to examine an infinite number of 

possibilities that the perfect state information vector lk can evolve to the next step 

in time. To simplify this computation, we use the same approximation technique 

used in development of the CKF in Section 2.3 by approximating the expectation in 

Eq. (2.26) using the third-degree cubature-rule. According to CKF, the predicted 

measurement zk+\ is Gaussian-distributed with mean Zk+\\k a s in Eq. (A.9) and 

covariance Pzz,fc+i|fc in Eq. (A.10). Therefore the expectation term in Eq. (2.26) may 

now be written as 

^•xk+uzk+1\ik,ek [Tr(P f c + 1 | f e + 1)] = Tr (EXfc+liZjt+1| lA.,ejt [P f c + i | f c + i ] ) 

= Tr I / Pfc+1|fc+ip(zfc+i|lfc,xfc+i,0fc)dzfc+i 
\JuN* 

= Tr I / Pfc+ijfc+1A^(z/c+i|/c,PZZifc+i|/c)dzfc+i 

(C.39) 

Using the cubature-rule of (A.2) to approximate the integral in (C.39) , we obtain 

/ , 2nz 

^k+uzk+1\ik<9k [Tr(Pfc+i|fc+i)] « Tr ( — 2jP f e + i | f c + 1 [zk+1]k + PZZ|fc+1|fca, 
V 21=1 

(C.40) 

where Pfc+i|fc+i is expressed as a function of (zfc+i|fc + Pzz
2fc+1|fcaO, and Pzz^+1 | fc is the 

square root of the covariance matrix Pzz,fc+i|fc and the cubature points a2 are defined 
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in accordance to Eq. (A.3), with 2n2 denoting the number of cubature points. 

Thus, using the approximation of Eq. (C.40), the DP algorithm is simplified into 

the following pair of equations: 

Terminal point: 

J(Ik+L-i) = a min Tr(Pk+L{k+L) (C.41) 
" H t - l S r t - f l - l 

Intermediate points: 

Pp+HP+i + 2 ^ E PP+Hp+i (>+% + P Z £ + I ! P Q 0 KC-42) 

for p = k,..., k + L — 2. In other words, the terminal point (C.41) computes the cost-

to-go function looking L cycles into the future, where L is the prescribed depth of 

horizon. Then, starting with the computed cost JTQU+L-I) , the DP algorithm (C.42) 

computes the sequence of cost-to-go functions by going backward from the terminal 

point step-by-step till we arrive at the present cycle time k. We need to mention that 

intermediate points (C.42) collapse to terminal point (C.41) if and only if L = 1. 

The DP algorithm of Eqs. (C.41) and (C.42) includes dynamic optimization of 

the CTR as a special case. For the case when there is no provision of a horizon 

looking into the future of L > 2, the terminal point in (C.41) defines the dynamic 

optimization algorithm. Then, there is a single cost-to-go function to be optimized 

as shown by 

J(lk) = min Tr(Pfc+1,fc+1). (C.43) 
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Curse of Dimensionality 

Unfortunately, when we include a horizon depth of L time-steps into the future in 

the DP algorithm, which is a highly desirable thing to do, we may run into Bellman's 

curse-of-dimensionahty problem To explain this important practical issue, we define 

the following parameters 

• Nz the measurement-space dimension 

• Nx the state-space dimension 

• Nq the waveform-parameter grid size 

• L dynamic-programming horizon-depth 

In general, the complexity of the dynamic-programming algorithm for waveform 

selection is of the order of 

0(N*(2NzNg)
L) (C 44) 

where Ns = max(iVz, Nx), the term Nf is for the matrix inversions in computing the 

expected error covanance matrix, and the term 2NZ is for the number of cubature 

points for computation of the expectation operators in computing the measurements 

of Eq (C 42) For this general case, it is assumed that all individual optimizations m 

each stage of the DP are performed over the complete set of waveform-library grid 

For the special case of dynamic optimization, it boils down to minimize the terminal 

point of (C 41) 

We see from Eq (C 44) that a mam source of complexity in the DP algorithm 

is due to the exponential growth of computations arising from the horizon depth L 

More specifically, at each stage or depth of DP and for each cubature point in Eq 
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(C 44) a new search in the waveform library needs to be performed We refer to such 

a complete search of the waveform library as the global search As L increases, the 

level of computation becomes unsustainable 

To mitigate the curse-of-dimensionahty problem, we may try to perform the opti­

mization by searching a local neighbourhood of the current cubature point In other 

words, we consider the use of an explore-exploit strategy for waveform selection by 

constraining the DP algorithm to be in a locality of the current cubature point as 

well as a limited-size neighbourhood m the wave-parameter grid The exploration-

exploitation strategy is discussed in [98] and [99] 
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Appendix D 

Derivation of the Approximation 

Formula in Eq. (2.31) 

To the best of our knowledge, the approximation described in Eq. (2.31) appeared for 

the first time in [22]; therein, however, no derivation was presented for the approxima­

tion. This appendix is intended to fill this gap. For brevity in notation, henceforth, 

we omit explicit representation of the dependence of itk+\\k+i on (Ik,Xk+i,%k+i, 0k), 

and also write Xk+i — xfc+i ~ Xfc+i|fc+i> that is, we focus on Eq. (2.26) and thus write 

g{xk,0k) = EX(c+liZ,+ltI, ie, [x^+1xfc+1] (D.45) 

= ^zk+1\ik^k+1,ek^Xk+1\ik,ek [x£+ 1x f c + 1] (D.46) 

where in Eq. (D.46), we used the definition of conditional expectation. 

The expectation in Eq. (D.46) is over the distribution j9(zfc+i|I/c,x/c+1, 0k). Ob­

serve that within the measurement prediction and update cycles of the CKF discussed 
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in Section 2.3, the measurements are functions of 0k solely through the noise covari-

ance ~R(0k) defined in Eq. (2.21). Recognizing that the parameter vector Ok is 

irrelevant once the measurement zk+i is available to the receiver, we are justified to 

approximate the distribution p(zk+i\Ik,xk+i, Ok) by the predicted measurement dis­

tribution p(zfc+1|Ifc,0fc). In other words, we may set ^zk+1\h,xk+l,ok{-) ~ ^zk+l\ik,ek(-) 

and therefore write 

g{xk,Ok) « Ez,+l!i t.,e,Ex,+l t I,,et [x[+1xfc+1] . (D.47) 

Next, using the identity xTy = Tr (yxT) and the fact that order of the expectation 

and the trace are interchangeable, we may go on to write 

g(xk,0k) « E z , + l ] u ^ [ T r ( E x , + 1 | I , ^ [ x , + 1 x [ + 1 ] ) ] . (D.48) 

By definition, the expression of Tr(-) in Eq. (D.48) is the state-estimation error 

covariance Pk+i\k+i\ hence, 

g(lk,Ok) » E z ,+ l | I„ e f r[Tr(P f c + l t f c + 1)] . (D.49) 

Finally noting that in deriving the CKF, Pfc+i|fe+i is independent of the measurement 

Zfc+i, we now arrive at 

g(Ik,Ok) ~ EZ(r+1n,A [Tr (Pfc+i|fe+1)] 

= Tr(P fc+1, fc+1), (D.50) 

which is the desired approximation reported in Eq. (2.31). 

174 



www.manaraa.com

Bibliography 

[1] S Haykin, Adaptive Radar Signal Processing Wiley Interscience, 2007 

[2] M I Skolnik, Ed , Radar Handbook, 3rd ed McGraw-Hill, 2008 

[3] F E Nathanson, J P Reilly, and M N Cohen, Radar Design Principles, 2nd ed 

McGraw-Hill, 1991 

[4] F E Nathanson, Radar Design Principles, 1st ed McGraw-Hill, 1969 

[5] [Online] Available http //www radarworld org/huelsmeyer html 

[6] C Speidemann, Y Chen, and W S Geisler, The Cognitive Neurosciences, 

4th ed , M S Gazzamga, Ed MIT Press, 2009 

[7] S Haykin, "Keynote lecture on cognitive dynamic systems," in NIPS 2009, 

Whistler, BC, Canada, 2009 

[8] [Online] Available http //histru bournemouth ac uk/Oral_History/Talkmg_ 

About_Technology/radar_research/the_magnetron html 

[9] J R Klauder, A C Price, S Darlington, and W J Albersheim, "The theory 

and design of chirp radars," Bell Syst Tech J vol 39, pp 745-808, 1960 

175 



www.manaraa.com

Ph.D. Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

[10] A. A. Oliner and G. H. Knittel, Phased Array Antennas. Artech House, 1972. 

[11] J. A. Thomas, C. F. Moss, and M. Vater, Echolocation in Bats and Dolphins. 

The University .of Chicago Press, 2004. 

[12] Z. W. Pylyshyn, Computation and Cognition. MIT Press, 1984. 

[13] J. M. Fuster, Cortex and Mind: Unifying Cognition. Oxford University Press, 

2003. 

[14] S. Haykin, "Cognitive radar: a way of the future," IEEE Signal Processing Mag­

azine, vol. 23, pp. 30-40, 2006. 

[15] P. M. Woodward, Probability and Information Theory, with Applications to 

Radar. Pergamon, 1953. 

[16] H. L. V. Trees, Detection, Estimation and Modulation Theory, Part III. Wiley 

Press, 1971. 

[17] D. F. Delong and E M. Hofstetter, "On the design of optimum radar waveforms 

for clutter rejection," IEEE Trans on Information Theory, vol. 13, no. 3, pp. 

454-463, 1967. 

[18] , "The design of clutter-resistant radar waveform with limited dynamic 

range," IEEE Trans, on Information Theory, vol. 15, no. 3, pp. 376-385, 1969. 

[19] S. Boyd and L. Vandebeighe, Convex Optimization. Cambridge University 

Press, 2004. 

176 



www.manaraa.com

Ph.D. Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

[20] S. Haykin, T. Kirubarajan, and B. Currie, "Adaptive radar for improved small 

target detection in a maritime environment," Adaptive Systems Laboratory, Mc­

Master University," ASL Report 03-01, 2003. 

[21] M. Athans and F. C. Schweppe, "Optimal waveform design via control theoretic 

principles," Information and Control, vol. 10, pp. 335-377, April 1967. 

[22] D. J. Kershaw and R. J. Evans, "Optimal waveform selection for tracking sys­

tems," IEEE Trans, on Information Theory, vol. 40, pp. 1536-1550, 1994. 

[23] , "Waveform selective probabilistic data association," IEEE Trans. Aerosp. 

Electron. Syst., vol. 33, pp. 1180-1188, 1997. 

[24] H. W. Sorenson, Ed., Kalman filtering: Theory and application IEEE Press, 

1985. 

[25] S. J. Julier and J. K. Uhlmann, "A new extension of the Kalman filter to non­

linear systems," Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence 

Sensing, Simulation and Controls, April 1997. 

[26] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, "Novel approach to 

nonlinear/non-Gaussian Bayesian state estimation," IEE Proc-F, vol. 140, no. 2, 

pp. 107-113, 1993. 

[27] S. P. Sira, A. P. Suppappola, and D. Morrell, "Dynamic configuration of time-

varying waveforms for agile sensing and tracking in clutter," IEEE Trans, on 

Signal Processing, vol. 55, pp. 3207-3217, 2007. 

177 



www.manaraa.com

Ph D Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

[28] S Suvorova and S D Howard, "Waveform libraries for radar tracking applica­

tions Maneuvering targets," m Proceedings of 2006 Conference on Information 

Sciences and Systems, 2006, pp 1424-1428 

[29] P M Woodward, "Information theory and the design of radar receivers," Proc 

IRE, vol 39, pp 1521-1524, December 1951 

[30] P M Woodward and I L Davis, "A theory of radar information," Phil Mag , 

vol 41, pp 1101-1117, October 1951 

[31] M R Bell, "Information theory and radar Mutual information and the design 

and analysis of radar waveforms and systems," Ph D dissertation, California 

Institute of Technology, 1988 

[32] , "Information theory and radar waveform," IEEE Trans on Infor Theo , 

vol 39, no 5, pp 1578-1597, September 1993 

[33] A Leshem, O Naparstek, and A Nehorai, "Information theoretic adaptive radar 

waveform design for multiple extended targets," IEEE Journal on Selected Topics 

in Signal Processing, vol 1, no 1, pp 42-55, 2007 

[34] T M Cover and J A Thomas, Elements of Information Theory NY Wiley-

Interscience, 1991 

[35] S Haykin, Y Xue, and T N Davidson, "Optimal waveform design for cognitive 

radar," ^2nd Asilomar Conference on Signals, Systems and Computers, pp 3-7, 

October 2008 

[36] N A Goodman, P R Vaenkata, and M A Neifeld, 'Adaptive waveform design 

and sequential hypothesis testing for target recognition with active sensors," 

178 



www.manaraa.com

Ph.D. Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

IEEE Journal of Selected Topics in Signal Processing, vol. 1, pp. 105-113, June 

2007. 

[37] A. Newell, Unified Theories of Cognition. Harvard University Press, 1990. 

[38] F. Rosenblatt, "A probabilistic model for information storage and organization 

in the brain," Psychological Review, vol. 65, no. 6, pp. 386-408, 1958. 

[39] M. L. Minsky and S. A. Papert, Perceptrons. Cambridge, MA: MIT Press, 1969. 

[40] D. S. Broomhead and D. Lowe, "Multivariable functional interpolation and adap­

tive networks," Complex Systems, vol. 2, pp. 321-335, 1988. 

[41] T. Poggio and F. Girosi, "Networks for approximation and learning," Proceedings 

of the IEEE, vol. 78, pp. 1481-1497, 1990. 

[42] V. N. Vapnik, Statistical Learning Theory. Wiley Press, 1998. 

[43] H. Jaeger, "Harnessing nonlinearity: Predicting chaotic systems and saving en­

ergy in wireless communication," Science, vol 304, pp. 18-80, April 2004. 

[44] Y. Xue, L. Yang, and S. Haykin, "Decoupled echo state networks with lateral 

inhibition," Neural Networks, vol. 20, no. 3, pp. 365-376, April 2007. 

[45] C. E. Shannon, "A mathematical theory of communication," The Bell System 

Technical Journal, vol. 27, pp. 379-423,623-656, July, October 1948. 

[46] S. Haykin, A. Zia, Y. Xue, and I. Arasaratnam, "Cognitive tracking radar: The­

ory and simulations," Digital Signal Processing, pp. under review DSP-10-65, 

2010. 

179 



www.manaraa.com

Ph.D. Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

[47] S. Haykin, "Cognitive dynamic systems," Proceedings of the IEEE, vol. 94, no. 11, 

pp. 1910-1911, November 2006. 

[48] Y. C. Ho and R. C. K. Lee, "A Bayesian approach to problems in stochastic 

estimation and control," IEEE Trans. Automatic Control, vol. 9, pp. 333-339, 

1964. 

[49] R. Bellman, Dynamic Programming. Princeton University Press, 1957. 

[50] S. Haykin, Communication Systems. Wiley Press, 2000. 

[51] D. P. Bertsekas, Dynamic Programming and Optimal Control, third, Ed. Athena 

Scientific, 2005. 

[52] A. H. Jazwinski, Stochastic Processes and Filtering Theory. NY: Academic, 

1970. 

[53] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equa­

tions. Springer: Berlin, 1999. 

[54] A. P. Sage and J. L. Melsa, System Identification. Academic Press, 1971. 

[55] F. Daum, "Nonlinear filter: Beyond the Kalman filter," IEEE A&E Systems 

Magazine, vol. 20, no 8, pp. 57-69, August 2005. 

[56] I. Arasaratnam and S. Haykin, "Cubature Kalman filters," IEEE Trans. Auto­

matic Control, vol. 54, pp. 1254-1269, June 2009. 

[57] A. H. Stroud, Approximate Calculation of Multiple Integrals. Prentice Hall, 

1971. 

180 



www.manaraa.com

Ph.D. Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

[58] I. Arasaratnam, S. Haykin, and T. R. Hurd, "Cubature Kalman filter for 

continuous-discrete systems: Theory and simulations," IEEE Trans, on Signal 

Processing, p. under review, 2010. 

[59] S. Sarkka, "On unscented Kalman filtering for state estimation of continuos-

time nonlinear systems," IEEE Trans, on Automatic Control, vol. 52, no. 9, pp. 

1631-1641, September 2007. 

[60] C. Uller, The Evolution of Cognition: The Case of Number, ser. Computation, 

Cognition, and Pylyshyn, D. Dedrick and L. Trick, Eds. The MIT Press, 2009. 

[61] S. Haykin and Y. Xue, "New generation of radar systems enabled with cognition," 

US Patent US serial 61/331,977, 2010. 

[62] S. Haykin, "New generation of radar systems enabled with cognition," in 2010 

IEEE Radar Conference, Arlington, VA, USA, May 2010. 

[63] W. James, Principles of Psychology, 1890. 

[64] J. Bryant and D. Miron, "Excitation-transfer theory," in Communication and 

emotion: Essays in honor of Dolf Zillmann, J. Bryant, D. Roskos-Ewoldsen, and 

J. Cantor, Eds. NJ: Erlbaum: Mahwah, 2003, pp. 31-59. 

[65] E. I. Knudsen, "Fundamental components of attention," Annu. Rev. Neurosci., 

vol. 30, pp. 57-78, 2007. 

[66] A. D. Braddeley, Essentials of Human Memory. Psychology Press Ltd, 1999. 

[67] A. S. Reber, Penguin Dictionary of Psychology. Penguin Reference, 1995. 

181 



www.manaraa.com

Ph.D. Thesis - Yanbo Xue McMaster - Electrical k Computer Engineering 

[68] S. Legg and M. Hutter, "A collection of defintions of intelligence," in Advances 

in Artifical General Intelligence: Concepts Architectures and Algorithms, B. Go-

ertzel and P. Wang, Eds. IOS Press, 2007, pp 17-24. 

[69] M. A. Fishchler and O. Firschein, Intelligence: The Eye, the Brain, and the 

Computer. Addison-Wesley Publishing Company Inc., 1987. 

[70] W. Baldygo, M. Wicks, Ft. Brown, P. Antonik, G. Capraro, and L. Hennington, 

"Artificial intelligence applications to constant false alarm rate (CFAR) process­

ing," Proc. IEEE 1993 Nat. Radar Conf., pp. 275-280, April 1993. 

[71] G. T. Capraro, A. Farina, H. Griffiths, and M. C. Wicks, "Knowledge-based 

radar signal and data processing: A tutorial overview," IEEE Signal Processing 

Magazine, vol. 23, no. 1, pp. 18-29, 2006. 

[72] F. Gini and M. Rangaswamy, Eds., Knowledge Based Radar Detection, Tracking 

and Classification. Wiley Interscience, 2008. 

[73] S. Haykin, Neural Networks and Learning Machines. Prentice hall, 2009. 

[74] P. J. Werbos, "Beyond regression: New tools for prediction and analysis in the 

behavioral sciences," Ph.D. dissertation, Harvard University, 1974. 

[75] , "Backpropagation through time: What it does and how to do it," Proceed­

ings of IEEE, vol. 78, pp. 1550-1560, 1990. 

[76] D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory. Wiley 

Press, 1949. 

182 



www.manaraa.com

Ph.D. Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

[77] T. D. Sanger, "Optimal unsupervised learning in a single-layer feedforward neural 

network," Neural Networks, vol. 2, pp. 459-473, 1989. 

[78] B. R. Mahafza, Radar Systems Analysis and Design Using Matlab. Chapman 

& Hall/CRC, 2000. 

[79] Y. Bar-Shalom and X. Li, Estimation and Tracking: Principles, Techniques and 

Software. Artech House, 1993. 

[80] M. Athans, R. P. Wishner, and A. Bertolini, "Suboptimal state estimation for 

continuous-time nonlinear systems from discrete noise measurements," IEEE 

Trans. Automatic Control, vol. 13, pp. 504-514, 1968. 

[81] S. Haykin, A. Zia, Y. Xue, and I. Arasaratnam, "Cognitive tracking radar," 

Canada and US Patent US Application Serial No. 12/588,346. Can Application 

No. 2,682,428, 2009. 

[82] X. Li and V. P. Jilkov, "Survey of maneuvering target tarcking Part I: Dynamic 

models," IEEE Trans, on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 

1333-1364, October 2003. 

[83] M. Mallick, T. Kirubarajan, and S. Arulampalam, "Comparison of nonlinear 

filtering algorithms in ground target indicator (GMTI) tracking," in Proceedings 

of the 4th International Conference on Information Fusion, Montreal, Canada, 

2001. 

[84] M. Mahendra and L. S. Barbara, "Comparison of single-point and two-point 

difference track initition algorithms using position measurements," ACTA Auto-

matica Sinica, vol. 34, pp. 258-265, March 2008. 

183 



www.manaraa.com

Ph.D. Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

[85] J. J. E. Slotine and W. Li, Applied Nonlinear Control. London: Prentice-Hall 

Inc., 1991. 

[86] V. I. Utkin, Sliding Modes in Control and Optimization. Springer-Verlag, 1992. 

[87] V. I. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electro-Mechanical 

Systems, 2nd ed. CRC Press, 2009. 

[88] A. Levant, "Chattering analysis," in European Control Conference, Kos, Greece, 

2007. 

[89] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice 

Hall, 2002. 

[90] [Online]. Available: http://en.wikipedia.org/wiki/Variable_structure_control 

[91] S. R. Habibi and R. Burton, "The variable structure filter," Journal of Dynamic 

Systems, Measurement and Control, vol. 125, no. 3, pp. 287-293, 2003. 

[92] G. Solari and F. Tubino, "A turbulence model based on principal components," 

Probabilistic Engineering Machanics, vol. 17, pp. 327-335, 2002. 

[93] M. Masonson, "On the Gaussian sum of Gaussian variates, the non-Gaussian 

sum of Gaussian variates, and the Gaussian sum of non-Gaussian variates," Pro­

ceedings of the IEEE, vol. 55, no. 9, p. 1661, 1967. 

[94] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to 

Tracking and Navigation. Wiley Interscience, 2001. 

[95] H. L V. Trees, Detection, Estimation and Modulation Theory, Part I. Wiley 

Press, 1968. 

184 

http://en.wikipedia.org/wiki/Variable_structure_control


www.manaraa.com

Ph.D. Thesis - Yanbo Xue McMaster - Electrical & Computer Engineering 

[96] C. H. M. Petr Tichavsky and A. Nehorai, "Poseterior Cramer-Rao bounds for 

discrete-time nonlinear filtering," IEEE Trans, on Signal Processing, vol. 46, pp. 

1386-1396, 1998. 

[97] R. Cools, "Constructing cubature formulas: The science behind the art," Acta 

Numerica, vol. 6, pp. 1-54, 1997. 

[98] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, 2005. 

[99] W. B. Powell, Approximate Dynamic Programming. Wiley-Interscience, 2007. 

185 


